667 resultados para compactação
Resumo:
The distribution of diagenetic alterations in Late Cenomanian siliciclastic reservoirs from Potiguar Basin was influenced by the stratigraphic framework and the depositional system. Seismic sections and geophysical logs of two wells drilled in the SW portion of the mentioned basin above register regional stratigraphic surfaces representing maximum floods related to a transgressive event. The sequential analysis of 80 m of drill core (~450 m deep) recognized nine depositional facies with an upwards granodecrescent standard piling that limits cycles with an erosional conglomeratic base (lag) overlain by intercalations of medium to very fine sandstones showing cross bedding (channel, planar and low angled) and horizontal bedding (plane-parallel , wave and flaser). The top of the cycles is marked by the deposition of pelites and the development of paleosoils and lagoons. The correlation of genetically related facies reveals associations of channel fillings, crevasse, and flood plains deposited in a transgressive system. Detailed descriptions of seventy nine thin sections aided by MEV-EBSD/EDS, DRX and stable isotope analyses in sandstones revealed an arcosian composition and complex textural arrays with abundant smectite fringes continuously covering primary components, mechanically infiltrated cuticles and moldic and intragrain pores. K-feldspar epitaxial overgrowth covers microcline and orthoclase grains before any other phase. Abundant pseudomatrix due to the compactation of mud intraclasts concentrate along the stratification planes, locally replaced by macrocristalline calcite and microcrystalline and framboidal pyrite. Kaolinite (booklets and vermicular), microcrystalline smectite, microcrystalline titanium minerals and pyrite replace the primary components. The intergrain porosity prevails over the moldic, intragrain and contraction porosities. The pores are poorly connected due to the presence of intergranular smectite, k-feldspar overgrowth, infiltrated mud and pseudomatrix. The sandstones were subjected to eodiagenetic conditions next to the surface and shallow burial mesodiagenetic conditions. The diagenetic alterations reduced the porosity and the permeability mainly due to the precipitation of smectite fringes, compactation of mud intraclasts onto the pseudomatrix and cementing by poikilotopic calcite characterizing different reservoir petrofacies. These diagenetic products acted as barriers and detours to the flow of fluids thus reducing the quality of the reservoir.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.
Resumo:
Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.
Resumo:
Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.
Resumo:
The Potiguar Basin is located in the Brazilian Equatorial Margin and presents sedimentary rocks affected by Cenozoic basic igneous intrusions, known as Macau Magmatism. The most prominent effect related to these intrusions is the formation of buchites, pyrometamorphic rocks that occur at very high temperatures and very low pressures in the sanidinite metamorphic facies. Through literature review, field observations, petrographic and petrophysical data, accessing the database of previous studies and results from this research, it was possible to characterize and estimate the effects produced in the thermal aureole of some hypabyssal bodies in the basin. The most relevant features associated with the intrusions are: compactation, hydraulic fracturing, partial melting and recrystallization of country rocks. According to the observed mineral occurrences, temperature of 800 to 1200 °C and pressure below 0,5 kbar were estimated at the contacts of the igneous bodies. The thermal modeling of the São João plug indicates thermal effects extending up to 150 m away from the contact and cooling time of approximately 265,000 years. After the peak of temperature, followed a cooling phase registered by remobilization and precipitation of minerals at low-temperature in faults, fractures and geodes, interpreted as derived from reactions with sedimentary rocks and metasomatic / hydrothermal fluids with abundant carbonatization and silicification.
Resumo:
The Potiguar Basin is located in the Brazilian Equatorial Margin and presents sedimentary rocks affected by Cenozoic basic igneous intrusions, known as Macau Magmatism. The most prominent effect related to these intrusions is the formation of buchites, pyrometamorphic rocks that occur at very high temperatures and very low pressures in the sanidinite metamorphic facies. Through literature review, field observations, petrographic and petrophysical data, accessing the database of previous studies and results from this research, it was possible to characterize and estimate the effects produced in the thermal aureole of some hypabyssal bodies in the basin. The most relevant features associated with the intrusions are: compactation, hydraulic fracturing, partial melting and recrystallization of country rocks. According to the observed mineral occurrences, temperature of 800 to 1200 °C and pressure below 0,5 kbar were estimated at the contacts of the igneous bodies. The thermal modeling of the São João plug indicates thermal effects extending up to 150 m away from the contact and cooling time of approximately 265,000 years. After the peak of temperature, followed a cooling phase registered by remobilization and precipitation of minerals at low-temperature in faults, fractures and geodes, interpreted as derived from reactions with sedimentary rocks and metasomatic / hydrothermal fluids with abundant carbonatization and silicification.
Resumo:
The animal trampling favors the soil compaction process in sheep raising and crop production integrated systems. This compression has negative effects, hindering the development of roots, the availability of nutrients, water and aeration, causing production losses, making it essential for the assessment of soil physical attributes for monitoring soil quality. Soil organic matter can be used to assess the quality of the soil, due to its relationship with the chemical, physical and biological soil properties. Conservation management system with tillage, along with systems integration between crops and livestock are being used to maintain and even increase the levels of soil organic matter. For that, a field experiment was carried out over a Oxisol clayey Alic in Guarapuava, PR, from de 2006 one. experiment sheep raising and crop production integrated systems The climate classified as Cfb .. The study was to evaluate the soil physical properties and quantify the stock of soil organic carbon and its compartmentalization in system integration crop - livestock with sheep under four nitrogen rates (0, 75, 150 and 225 kg ha-1) in the winter pasture, formed by the consortium oat (Avena strigosa) and ryegrass (Lolium multiflorum) and the effect of grazing (with and without). The soil samples blades density evaluations, total porosity, macro and micro, aggregation and carbon stocks were held in two phases: Phase livestock (after removal of the animals of the area) and phase crop (after maize cultivation). The collection of soil samples were carried out in layers of 0-0.5, 0.05-0.10, 0.10-0.20 and m. Data were subjected to analysis of variance and the hypotheses tested by the F test (p <0.05). For the quantitative effect data regression and the qualitative effect used the test medium. In non-significant regressions used the average and standard deviation treatments. The animal trampling caused an increase in bulk density in the 0.10-0.20 m layer. The dose of 225 kg N ha-1 in winter pasture increased total soil porosity at 8% compared to dose 0 kg N ha-1 in the crop stage. The grazing had no effect on soil macroporosity. GMD of aggregates in the phase after grazing the surface layer was damaged by grazing. Nitrogen rates used in the winter pasture and grazing not influence the total organic carbon stocks. The TOC is not influenced by nitrogen fertilization on grassland. The grazing increases the stock of POC in the 0.10-0.20 m layer livestock phase and cause the stock of POC in the 0-0.5 m layer in the crop stage. The MAC is not influenced by N rates applied in the pasture or by grazing.
Resumo:
Urban paving is of paramount importance for a city, both socioeconomic and in quality of life. The urban flooring not different so-called road surface are constituted by a set of horizontal layers, overlaid on the ground, which have the main function of supporting the actions induced by the vehicle redistributing the stresses transmitted to the ground. Soils are important materials for the execution of paving, mainly because they are part of the basic structure of the floor and mostly be available in abundance, with a very low cost, however, their properties usually do not meet the requirements necessary to perform the floor. The soil stabilization for the implementation of urban pavement bases and sub-bases is an increasingly important aspect in the current situation, because always there is the concern with the environment, and there is now the clear awareness that every effort should be made to minimize the effects caused by the exploitation of deposits and deposition of material. In this sense this work presents the effects of adding different proportions of lime to stabilize a sedimentary soil sample from the urban area of the city of Curitiba. It selected a sample quantity of soil in the region to study the stabilization insertion of hydrated lime type (CHIII) powder. The two variables in the study are related to the content of lime mixed with the soil at 0% percentages of 3%, 6%, 8% and 16%, and cure times at which these mixtures were subjected to (0, 7, 14, 28 and 56 days). The tested mixtures were prepared from dosages defined by two methods: one checking the chemical behavior of the samples by means of changes in pH values, and the second analyzing the mechanical behavior through the RCS values. It has been found that the chemical stability analyzed by addition of lime, provided an average increase of RCS in most soil samples studied, because of some physical and chemical characteristics thereof. For mixtures with 6%, 8% and 16% of lime after 28 days of curing, the average RCS was 0,57 MPa, 1,06 MPa and 2,37 MPa, respectively, for the normal proctor, and as for intermediate proctor, in the same curing time and on the same percentages RCS results were 0,54 MPa, 1,04 MPa and 2,71 MPa, respectively. In global terms, the soil-lime mixtures studied showed acceptable behavior by law to use as layers of sub-base. However, only the mixture with 16% of lime, at 28 days, is recommended for use on floors bases. Even so, the mixtures studied constitute a good alternative economic and socio-environmental.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.
Resumo:
The soil resistance to penetration and shear can be used as indicators of soil compaction and to indicate the susceptibility of a soil to erosion. The objective of this study was to quantify and compare the impact provided by different land uses in a haplic cambissol in areas of permanent preservation, from the soil resistance to penetration and shear. The experimental area was located in an area of permanent preservation, the sub-basin of the Ribeira Iguape River - SP, with different land uses: banana cultivation - CBAN, degraded pasture - PDEG, silvopastoral system - MPIS and native forest - MNAT. The test for resistance to penetration was accomplished with a digital penetrometer compaction of manual effort, to a depth of 40 cm. The soil shear strength was determined by Vane Test at a depth between 0 and 5 cm. The degraded pasture was similar to native forest, with less resistance to penetration. The banana cultivation and silvopastoral system were the land uses with the highest resistance to penetration, bringing serious risk of erosion in areas of permanent preservation. The soil under native forest had lower shear strength. The cultivation of bananas, degraded pasture and silvopastoral system were the land uses with higher shear strength of soil, indicating that the use of these soils in areas of permanent preservation is promoting the same compression.
Resumo:
Gene therapy is one of the major challenges of the post-genomic research and it is based on the transfer of genetic material into a cell, tissue or organ in order to cure or improve the patient s clinical status. In general, gene therapy consists in the insertion of functional genes aiming substitute, complement or inhibit defective genes. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, a key issue is to create systems, vectors, able to transfer and protect the DNA until it reaches the target. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easy to produce, present suitable stability and enable transfection. The aim of this work was to evaluate two different non-viral vectors, cationic liposomes and nanoemulsions, and the possibility of their use in gene therapy. For the two systems, cationic lipids and helper lipids were used. Nanoemulsions were prepared using sonication method and were composed of Captex® 355; Tween® 80; Spam® 80; cationic lipid, Stearylamine (SA) or 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) and water (Milli-Q®). These systems were characterized by average droplet size, Polidispersion Index (PI) and Zeta Potential. The stability of the systems; as well as the DNA compaction capacity; their cytotoxicity and the cytotoxicity of the isolated components; and their transfection capacity; were also evaluated. Liposomes were made by hydration film method and were composed of DOTAP; 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), containing or not Rhodaminephosphatidylethanolamine (PE- Rhodamine) and the conjugate Hyaluronic Acid DOPE (HA-DOPE). These systems were also characterized as nanoemulsions. Stability of the systems and the influence of time, size of plasmid and presence or absence of endotoxin in the formation of lipoplexes were also analyzed. Besides, the ophthalmic biodistribution of PE-Rhodamine containing liposomes was studied after intravitreal injection. The obtained results show that these systems are promising non-viral vector for further utilization in gene therapy and that this field seems to be very important in the clinical practice in this century. However, from the possibility to the practice, there is still a long way
Resumo:
Descrevem-se os vestígios das barragens do distrito de Castelo Branco atribuídas ao período romano e procura-se reconstituir as suas características iniciais. Caracteriza-se ainda a barragem de Alferrarede, pós-romana, em bom estado de conservação, de duplo muro e aterro intermédio, e apresentam-se dados retirados da bibliografia relativos à "Presa de Penamacor", que sofreu um rombo no primeiro quartel do sécu lo XVI e da qual não há vestígios. Das oito barragens atribuídas ao período romano, duas são de alvenaria e seis de terra. Estas últimas parecem não ter sido dotadas de descarregadores de superfície (nem de órgãos fixos para assegurar a utilização da água). A conservação de vestígios dos aterros poderá dever-se à existência de brechas que asseguram a passagem da água sem galgamento. Algumas das barragens de terra eram estruturas importantes, que envolveram grandes movimentos de terra e a utilização de boas técnicas de compactação como atesta a caracterização geotécnica. As maiores barragens são a da Egitânia e da Lameira com alturas de 11 e 9m e volumes de aterro de 12000 e 16000 m3, respectivamente.
Resumo:
Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite