914 resultados para carbon nanostructure, Transmission Electron Microscopy, diffusion, defect, activation energy
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
Three different methods were used to introduce 1.0 wt.% of Pt in bifunctional Pt/MCM-22 zeolite catalysts: ion exchange with Pt(NH3)(4)(2+), incipient wetness impregnation with PtCl6H2 and mechanical mixture with Pt/Al2O3. The Pt dispersion was estimated by transmission electron microscopy and the hydrogenating activity with toluene hydrogenation at 110 degrees C. From these experiments, it can be concluded that with the ion exchanged sample, platinum was located within the inner micropores and on the outer surface, whereas with the impregnated one, platinum was essentially on the outer surface under the form of large particles. With all the samples there is a fast initial decrease in the activity for n-hexane hydroisomerisation at 250 degrees C. With exchanged and impregnated samples, this decrease is followed by a plateau, the activity value being then higher with impregnated sample. For the sample prepared by mechanical mixture a continuous decrease in activity can be observed. All these differences can be related with the distinct locations of Pt.
Resumo:
The catalytic properties of Pt based cordierite foam catalysts have been evaluated in catalytic combustion of toluene (800 ppm in air). The catalysts contain identical Pt content (0.1%) which was introduced by three different ways: Pt ion exchange on MFI zeolite and then coating on the foam; Pt ion exchange after zeolite coating and finally Pt directly wet impregnated on the cordierite foam. The catalytic behaviour of Pt foam based catalysts was compared with that of PtMFI zeolite under powder form. Pt exchanged MFI supported on the cordierite foams present an improvement of activity for toluene combustion of about 50 degrees C on the light off temperature (T-50%). The enhanced performance of the structured catalysts is due not only to the open structure of foams and homogeneous thin layers catalyst deposited on their cell walls, but also to the fact that the size and location of Pt particles present in MFI zeolite are changed during the dipping step. Indeed, as prepared Pt samples and those used in the preparation of the slurry were observed by transmission electron microscopy revealing that the chemical interaction of PtMFI zeolite with the binder and detergent, both present in the slurry, leads to an increase of Pt particles size which were found to migrate from internal pores to the external surface of zeolite crystallites thereby increasing catalytic activity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The bifunctional transformation of n-hexane was carried out over Pt/MCM-22 based catalysts. MCM-22 was synthesized and submitted to ion exchange with rare earth nitrate solutions of La, Nd and Yb, followed by Pt introduction. Three different methods were used to introduce about 1 wt% of Pt in the zeolite: ion exchange, incipient wetness impregnation and mechanical mixture with Pt/Al(2)O(3). The bifunctional catalysts were characterized by transmission electron microscopy and by the model reaction of toluene hydrogenation. These experiments showed that, in the ion exchanged sample, Pt is located both within the inner micropores and on the outer surface, whereas in the impregnated one, the metal is essentially located on the outer surface under the form of large particles. The presence of RE elements increases the hydrogenating activity of Pt/MCM-22 since the location of these species at the vicinity of metal particles causes modification on its electronic properties. Whatever the mode of Pt introduction, a fast initial decrease in conversion is observed for n-hexane transformation, followed by a plateau related to the occurrence of the catalytic transformations at the hemicages located at the outer surface of the crystals. The effect of rare earth elements on the hydrogenating function leads to a lower selectivity in dibranched isomers and increased amounts of light products.
Resumo:
Agências Financiadoras: Fundação para a Ciência e a Tecnologia - PTDC/FIS/102127/2008 e PTDC/FIS/102127/2008 e SFRH/BPD/78871/2011; Spanish Ministerio de Ciencia e Innovacion - FUNCOAT-CSD2008-00023-CONSOLIDER; Instituto Superior Técnico;
Resumo:
Shape Memory Alloy (SMA) Ni-Ti films have attracted much interest as functional and smart materials due to their unique properties. However, there are still important issues unresolved like formation of film texture and its control as well as substrate effects. Thus, the main challenge is not only the control of the microstructure, including stoichiometry and precipitates, but also the identification and control of the preferential orientation since it is a crucial factor in determining the shape memory behaviour. The aim of this PhD thesis is to study the optimisation of the deposition conditions of films of Ni-Ti in order to obtain the material fully crystallized at the end of the deposition, and to establish a clear relationship between the substrates and texture development. In order to achieve this objective, a two-magnetron sputter deposition chamber has been used allowing to heat and to apply a bias voltage to the substrate. It can be mounted into the six-circle diffractometer of the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, enabling an in-situ characterization by X-ray diffraction(XRD) of the films during their growth and annealing. The in-situ studies enable us to identify the different steps of the structural evolution during deposition with a set of parameters as well as to evaluate the effect of changing parameters on the structural characteristics of the deposited film. Besides the in-situ studies, other complementary ex-situ characterization techniques such as XRD at a laboratory source, Rutherford backscattering spectroscopy(RBS), Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and electrical resistivity (ER) measurements during temperature cycling have been used for a fine structural characterization. In this study, mainly naturally and thermally oxidized Si(100) substrates, TiN buffer layers with different thicknesses (i.e. the TiN topmost layer crystallographic orientation is thickness dependent) and MgO(100) single crystals were used as substrates. The chosen experimental procedure led to a controlled composition and preferential orientation of the films. The type of substrate plays an important role for the texture of the sputtered Ni-Ti films and according to the ER results, the distinct crystallographic orientations of the Ni-Ti films influence their phase transformation characteristics.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Trophozoites of the Giardia muris group from hamsters, domestic rats and mice and of the Giardia duodenalis group from hamsters and domestic rats were examined by transmission electron microscopy. The basic ultrastructure of the trophozoites was similar. Differences were shown in the morphology of the ventrolateral flange of the trophozoites of Giardia muris and Giardia duodenalis groups. Marginal plates are less developed in the species of the Giardia duodenalis group. In this group, the distal extremity of the lateral flange is short and thick and the marginal plate does not penetrate into the distal extremity of the flange. In the Giardia muris group, the ventro-lateral flange is well developed and narrow and the marginal plate penetrates the distal extremity of the flange. The osmiophilic lamella, which accompanies the dorsal surface of the marginal plate is seen only in the Giardia muris group.
Resumo:
Transthyretin (TTR) protects against A-Beta toxicity by binding the peptide thus inhibiting its aggregation. Previous work showed different TTR mutations interact differently with A-Beta, with increasing affinities correlating with decreasing amyloidogenecity of the TTR mutant; this did not impact on the levels of inhibition of A-Beta aggregation, as assessed by transmission electron microscopy. Our work aimed at probing differences in binding to A-Beta by WT, T119M and L55P TTR using quantitative assays, and at identifying factors affecting this interaction. We addressed the impact of such factors in TTR ability to degrade A-Beta. Using a dot blot approach with the anti-oligomeric antibody A11, we showed that A-Beta formed oligomers transiently, indicating aggregation and fibril formation, whereas in the presence of WT and T119M TTR the oligomers persisted longer, indicative that these variants avoided further aggregation into fibrils. In contrast, L55PTTR was not able to inhibit oligomerization or to prevent evolution to aggregates and fibrils. Furthermore, apoptosis assessment showed WT and T119M TTR were able to protect against A-Beta toxicity. Because the amyloidogenic potential of TTR is inversely correlated with its stability, the use of drugs able to stabilize TTR tetrameric fold could result in increased TTR/ABeta binding. Here we showed that iododiflunisal, 3-dinitrophenol, resveratrol, [2-(3,5-dichlorophenyl)amino] (DCPA) and [4- (3,5-difluorophenyl)] (DFPB) were able to increase TTR binding to A-Beta; however only DCPA and DFPB improved TTR proteolytic activity. Thyroxine, a TTR ligand, did not influence TTR/A-Beta interaction and A-Beta degradation by TTR, whereas RBP, another TTR ligand, not only obstructed the interaction but also inhibited TTR proteolytic activity. Our results showed differences between WT and T119M TTR, and L55PTTR mutant regarding their interaction with A-Beta and prompt the stability of TTR as a key factor in this interaction, which may be relevant in AD pathogenesis and for the design of therapeutic TTR-based therapies.
Resumo:
The objectives of this study were to determine both the prevalence of microsporidial intestinal infection and the clinical outcome of the disease in a cohort of 40 HIV-infected patients presenting with chronic diarrhea in Rio de Janeiro, Brazil. Each patient, after clinical evaluation, had stools and intestinal fragments examined for viral, bacterial and parasitic pathogens. Microsporidia were found in 11 patients (27.5%) either in stools or in duodenal or ileal biopsies. Microsporidial spores were found more frequently in stools than in biopsy fragments. Samples examined using transmission electron microscopy (n=3) or polymerase chain reaction (n=6) confirmed Enterocytozoon bieneusi as the causative agent. Microsporidia were the only potential enteric pathogens found in 5 of the 11 patients. Other pathogens were also detected in the intestinal tract of 21 patients, but diarrhea remained unexplained in 8. We concluded that microsporidial infection is frequently found in HIV infected persons in Rio de Janeiro, and it seems to be a marker of advanced stage of AIDS.
Resumo:
Introduction: The essential oil Mentha x villosa (MVEO) has a wide range of actions, including antibacterial, antifungal, antiprotozoal and schistosomicidal actions. The present study aimed to investigate the ultrastructural changes of MVEO on the tegument of adult Schistosoma mansoni. Materials and Methods: Different concentrations of MVEO were tested on S. mansoni adult worms in vitro. Ultrastructural changes on the tegument of these adult worms were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The MVEO caused the death of all worms at 500 μg mL-1 after 24 h. After 24h of 500 μg mL-1 MVEO treatment, bubble lesions were observed over the entire body of worms and they presented loss of tubercles in some regions of the ventral portion. In the evaluation by TEM, S. mansoni adult worms treated with MVEO, 500 μg mL-1, presented changes in the tegument and vacuoles in the syncytial matrix region. Glycogen granules close to the muscle fibers were visible. Conclusion: The ability of MVEO to cause extensive ultrastructural damage to S. mansoni adult worms correlates with its schistosomicidal effects and confirms earlier findings with S. mansoni.
Resumo:
White cell (WBC)-reduction filters have been shown to be effective in removing infectious agents from infected blood products. In this study, the mechanisms of Trypanosoma cruzi (T. cruzi) retention by WBC-reduction filters were assessed. Human packed red blood cell (PRBC) and platelet concentrate (PC) samples were contaminated with T. cruzi organisms (Y strain; 3.4 x 10(6)/ml), and then filtered using WBC-reduction experimental filters that provided about 3 log10 WBC removal. Transmission electron microscopy sections showed that T. cruzi parasites were removed from contaminated PRBC and PC samples primarily by mechanical mechanism without interacting with filter fibbers or blood cells. In addition, we found that T. cruzi parasites were also removed by a direct fibber adhesion. These data indicate that T. cruzi parasites are removed from infected blood not only by mechanical mechanism but also by biological mechanism probably mediated by parasite surface proteins.
Resumo:
This paper reports an unusual pattern of serological HBV markers and the presence of HBsAg/anti-HBs immune complexes in serum samples from two patients with fulminant hepatitis from the Brazilian Western Amazon Basin. The diagnosis was made by both serologic tests and demonstration of antigen/antibody complexes by transmission electron microscopy. Concurrent Delta virus superinfection is also discussed.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.