974 resultados para capillary electrochromatography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supercritical CO2 test facility is currently being developed at Indian Institute of Science, Bangalore, India to analyze the performance of a closed loop Brayton cycle for concentrated solar power (CSP) generation. The loop has been designed for an external heat input of 20 kW a pressure range of 75-135 bar, flow rate of 11 kg/min, and a maximum cycle temperature of 525 degrees C. The operation of the loop and the various parametric tests planned to be performed are discussed in this paper The paper addresses various aspects of the loop design with emphasis on design of various components such as regenerator and expansion device. The regenerator design is critical due to sharp property variations in CO2 occurring during the heat exchange process between the hot and cold streams. Two types of heat exchanger configurations 1) tube-in-tube (TITHE) and 2) printed circuit heat exchanger (PCHE) are analyzed and compared. A PCHE is found to be similar to 5 times compact compared to a TITHE for identical heat transfer and pressure drops. The expansion device is being custom designed to achieve the desired pressure drop for a range of operating temperatures. It is found that capillary of 5.5 mm inner diameter and similar to 2 meter length is sufficient to achieve a pressure drop from 130 to 75 bar at a maximum cycle temperature of 525 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a comprehensive physical description of the vaporization, self-assembly, agglomeration, and buckling kinetics of sessile nanofluid droplets pinned on a hydrophobic substrate. We have deciphered five distinct regimes of the droplet life cycle. Regimes I-III consists of evaporation-induced preferential agglomeration that leads to the formation of a unique dome-shaped inhomogeneous shell with a stratified varying-density liquid core. Regime IV involves capillary-pressure-initiated shell buckling and stress-induced shell rupture. Regime V marks rupture-induced cavity inception and growth. We demonstrate through scaling arguments that the growth of the cavity (which controls the final morphology or structure) can be described by a universal function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase change heat transfer in porous media finds applications in various geological flows and modern heat pipes. We present a study to show the effect of phase change on heat transfer in a porous channel. We show that the ratio of Jakob numbers based on wall superheat and inlet fluid subcooling governs the liquid-vapor interface location in the porous channel and below a critical value of the ratio, the liquid penetrates all the way to the extent of the channel in the flow direction. In such cases, the Nusselt number is higher due to the proximity of the liquid-vapor interface to the heat loads. For higher heat loads or lower subcooling of the liquid, the liquid-vapor interface is pushed toward the inlet, and heat transfer occurs through a wider vapor region thus resulting in a lower Nusselt number. This study is relevant in the designing of efficient two-phase heat exchangers such as capillary suction based heat pipes where a prior estimation of the interface location for the maximum heat load is required to ensure that the liquid-vapor interface is always inside the porous block for its operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal systems offer an effective medium to micro-engineer complex structures without involving sophisticated fabrication procedures. This article presents a deployment strategy of multiple droplets of different colloidal composition and utilizes the inherent capillary flow driven self assembly of nanoparticles to construct stacks of multiple materials on a given glass substrate. Here we used aqueous nano-crystalline titania and nano-amorphous silica solutions as the two materials. Initially, a pure nanotitania (nanosilica) droplet is deployed and allowed to dry partially. Subsequently, a second droplet of pure nanosilica (nanotitania) is deployed co-axially on the partially dried precipitate. The proposed deployment strategy allowed significant morphological differences when the deployment order of nanosilica and nanotitania were interchanged. Compositional analysis performed using EDX (Energy Dispersive X-ray spectroscopy) showed preferential deposition of nanosilica and nanotitania along the radial as well as the axial plane of the final deposit pattern. The underlying mechanism for such a phenomenon could be attributed to the contact line dynamics of a sessile double droplet. We also observe heteroaggregation of the nanosilica-nanotitania interaction along a narrow interface which resulted in nanotitania particles clustering into isolated islands embedded into a matrix of nanosilica particles. Overall, this work elucidates the evaporation driven dynamics of a mixed colloidal system which displays both macroscopic as well as microscopic phenomena. Such a system could be used to generate ordered arrays of functional materials with engineered micro to nano-scale properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell: Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets, Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscate pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据两流体同心环状流线性稳定性分析的结果 ,对微重力气 /液两相流地面模拟实验所应遵循的相似准则进行了探讨 ,得到了一个新的重力无关性准则 ,即Bond数和环形区流体相的毛细数之比的绝对值不大于 1 .此外 ,微重力气 /液两相流模拟实验还必须满足两个条件 ,即流量比和气相表观Weber数应与所模拟的流动中对应数值相等 . In the present paper, the principle of similarity for two phase flows at microgravity is studied based on the results of the linear stability analysis of the two fluid concentric annular flow configuration. A new criterion of gravity independence, namely the absolute value of the ratio between the Bond number and the capillary number of the phase flowing in the annulus is no more than one, is achieved. It is also pointed out that the flowrate ratio and the gas superficial Weber number must have the same ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stiction in microelectromechanical systems (MEMS) has been a major failure mode ever since the advent of surface micromachining in the 80s of the last century due to large surface-area-to-volume ratio. Even now when solutions to this problem are emerging, such as self-assembled monolayer (SAM) and other measures, stiction remains one of the most catastrophic failure modes in MEMS. A review is presented in this paper on stiction and anti-stiction in MEMS and nanoelectromechanical systems (NEMS). First, some new experimental observations of stiction in radio frequency (RF) MEMS switch and micromachined accelerometers are presented. Second, some criteria for stiction of microstructures in MEMS and NEMS due to surface forces (such as capillary, electrostatic, van der Waals, Casimir forces, etc.) are reviewed. The influence of surface roughness and environmental conditions (relative humidity and temperature) on stiction are also discussed. As hydrophobic films, the self-assembled monolayers (SAMs) turn out able to prevent release-related stiction effectively. The anti-stiction of SAMs in MEMS is reviewed in the last part.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microarraying involves laying down genetic elements onto a solid substrate for DNA analysis on a massively parallel scale. Microarrays are prepared using a pin-based robotic platform to transfer liquid samples from microtitre plates to an array pattern of dots of different liquids on the surface of glass slides where they dry to form spots diameter < 200 μm. This paper presents the design, materials selection, micromachining technology and performance of reservoir pins for microarraying. A conical pin is produced by (i) conventional machining of stainless steel or wet etching of tungsten wire, followed by (ii) micromachining with a focused laser to produce a microreservoir and a capillary channel structure leading from the tip. The pin has a flat end diameter < 100 μm from which a 500 μm long capillary channel < 15 μm wide leads up the pin to a reservoir. Scanning electron micrographs of the metal surface show roughness on the scale of 10 μm, but the pins nevertheless give consistent and reproducible spotting performance. The pin capacity is 80 nanolitres of fluid containing DNA, and at least 50 spots can be printed before replenishing the reservoir. A typical robot holds can hold up to 64 pins. This paper discusses the fabrication technology, the performance and spotting uniformity for reservoir pins, the possible limits to miniaturization of pins using this approach, and the future prospects for contact and non-contact arraying technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined detection system involving simultaneous LIF and contactless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conductivity detector was used in (CD)-D-4. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably. (C) 2008 Yong Yu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the scaling criteria of polymer flooding reservoir obtained in our previous work in which the gravity and capillary forces, compressibility, non-Newtonian behavior, absorption, dispersion, and diffusion are considered, eight partial similarity models are designed. A new numerical approach of sensitivity analysis is suggested to quantify the dominance degree of relaxed dimensionless parameters for partial similarity model. The sensitivity factor quantifying the dominance degree of relaxed dimensionless parameter is defined. By solving the dimensionless governing equations including all dimensionless parameters, the sensitivity factor of each relaxed dimensionless parameter is calculated for each partial similarity model; thus, the dominance degree of the relaxed one is quantitatively determined. Based on the sensitivity analysis, the effect coefficient of partial similarity model is defined as the summation of product of sensitivity factor of relaxed dimensionless parameter and its relative relaxation quantity. The effect coefficient is used as a criterion to evaluate each partial similarity model. Then the partial similarity model with the smallest effect coefficient can be singled out to approximate to the prototype. Results show that the precision of partial similarity model is not only determined by the number of satisfied dimensionless parameters but also the relative relaxation quantity of the relaxed ones.