958 resultados para cancer, metastasis, immune system, Myeloid-Derived Suppressor Cells, pregnancy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alloreactive T cells are thought to be a potentially rich source of high-avidity T cells with therapeutic potential since tolerance to self-Ags is restricted to self-MHC recognition. Given the particularly high frequency of alloreactive T cells in the peripheral immune system, we used numerous MHC class I multimers to directly visualize and isolate viral and tumor Ag-specific alloreactive CD8 T cells. In fact, all but one specificities screened were undetectable in ex vivo labeling. In this study, we report the occurrence of CD8 T cells specifically labeled with allo-HLA-A*0201/Melan-A/MART-1(26-35) multimers at frequencies that are in the range of 10(-4) CD8 T cells and are thus detectable ex vivo by flow cytometry. We report the thymic generation and shaping of tumor Ag-specific, alloreactive T cells as well as their fate once seeded in the periphery. We show that these cells resemble their counterparts in HLA-A*0201-positive individuals, based on their structural and functional attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is one of the world's leading causes of death with a rising trend in incidence. These epidemiologic observations underline the need for novel treatment strategies. In this regard, a promising approach takes advantage of the adaptive effector mechanisms of the immune system, using T lymphocytes to specifically target and destroy tumour cells. However, whereas current approaches mainly depend on short-lived, terminally differentiated effector T cells, increasing evidence suggests that long lasting and maximum efficient immune responses are mediated by low differentiated memory T cells. These memory T cells should display characteristics of stem cells, such as longevity, self-renewal capacity and the ability to continuously give rise to further differentiated effectors. These stem celllike memory T (TSCM) cells are thought to be of key therapeutic value as they might not only attack differentiated tumour cells, but also eradicate the root cause of cancer, the cancer stem cells themselves. Thus, efforts are made to characterize TSCM cells and to identify the signalling pathways which mediate their induction. Recently, a human TSCM cell subset was described and the activation of the Wnt-ß-catenin signalling pathway by the drug TWS119 during naive CD8+ T (TN) cell priming was suggested to mediate their induction. However, a precise deciphering of the signalling pathways leading to TSCM cell induction and an in-depth characterization of in vitro induced and in vivo occurring TSCM cells remain to be performed. Here, evidence is presented that the induction of human and mouse CD8+ and CD4+ TSCM cells may be triggered by inhibition of mechanistic/mammalian target of rapamycin (mTOR) complex 1 with simultaneously active mTOR complex 2. This molecular mechanism arrests a fraction of activated TN cells in a stem cell-like differentiation state independently of the Wnt-ß-catenin signalling pathway. Of note, TWS119 was found to also inhibit mTORCl, thereby mediating the induction of TSCM cells. Suggesting an immunostimulatory effect, the acquired data broaden the therapeutic range of mTORCl inhibitors like rapamycin, which are, at present, exclusively used due to their immunosuppressive function. Furthermore, by performing broad metabolic analyses, a well-orchestrated interplay between intracellular signalling pathways and the T cells' metabolic programmes could be identified as important regulator of the T cells' differentiation fate. Moreover, in vitro induced CD4+ TSCM cells possess superior functional capacities and share fate-determining key factors with their naturally occurring counterparts, assessed by a first-time full transcriptome analysis of in vivo occurring CD4+ TN cell, TSCM cells and central memory (TCM) cells and in vitro induced CD4+ TSCM cells. Of interest, a group of 56 genes, with a unique expression profile in TSCM cells could be identified. Thus, a pharmacological mechanism allowing to confer sternness to activated TN cells has been found which might be highly relevant for the design of novel T cell-based cancer immunotherapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is characterized by multisystem immune-mediated injury in the setting of autoimmunity to nuclear antigens. The clinical heterogeneity of SLE, the absence of universally agreed clinical trial end points, and the paucity of validated therapeutic targets have, historically, contributed to a lack of novel treatments for SLE. However, in 2011, a therapeutic monoclonal antibody that neutralizes the cytokine TNF ligand superfamily member 13B (also known as B-cell-activating factor of the TNF family [BAFF]), belimumab, became the first targeted therapy for SLE to have efficacy in a randomized clinical trial. Because of its specificity, the efficacy of belimumab provides an opportunity to increase understanding of SLE pathophysiology. Although belimumab depletes B cells, this effect is not as powerful as that of other B-cell-directed therapies that have not been proven efficacious in randomized clinical trials. In this article, therefore, we review results suggesting that neutralizing BAFF can have effects on the immune system other than depletion of B cells. We also identify aspects of the BAFF system for which data in relation to SLE are still missing, and we suggest studies to investigate the pathogenesis of SLE and ways to refine anti-BAFF therapies. The role of a related cytokine, TNF ligand superfamily member 13 (also known as a proliferation-inducing ligand [APRIL]) in SLE is much less well understood, and hence this review focuses on BAFF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As expression of Cxs in cells of the immune system increases upon cellular activation, we investigated whether Cxs and especially CxHcs play a major role during T cell-mediated responses. In particular, we studied the expression of Cx43Hc following CD4(+) T cell stimulation using flow cytometry, real-time PCR, and Western blot analysis. We showed that expression of Cx43 and its phosphorylated isoforms increased in response to the engagement of CD3 and CD28. Cx43Hcs were found to be involved in sustaining proliferation of T cells, as assessed by cell cycle staining, thymidine incorporation assays, and CFSE analysis of cells exposed to mimetic peptide inhibitors of the plasma membrane Cx channels and antibodies generated to an extracellular region of Cx. The reduction of T cell proliferation mediated by Cx channel inhibitors suppressed cysteine uptake but not cytokine production. We conclude that upon antigen recognition, T cells require CxHc to sustain their clonal expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain autoimmune diseases as well as asthma have increased in recent decades, particularly in developed countries. The hygiene hypothesis has been the prevailing model to account for this increase; however, epidemiology studies also support the contribution of diet and obesity to inflammatory diseases. Diet affects the composition of the gut microbiota, and recent studies have identified various molecules and mechanisms that connect diet, the gut microbiota, and immune responses. Herein, we discuss the effects of microbial metabolites, such as short chain fatty acids, on epithelial integrity as well as immune cell function. We propose that dysbiosis contributes to compromised epithelial integrity and disrupted immune tolerance. In addition, dietary molecules affect the function of immune cells directly, particularly through lipid G-protein coupled receptors such as GPR43.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Detection rates for adenoma and early colorectal cancer (CRC) are unsatisfactory due to low compliance towards invasive screening procedures such as colonoscopy. There is a large unmet screening need calling for an accurate, non-invasive and cost-effective test to screen for early neoplastic and pre-neoplastic lesions. Our goal is to identify effective biomarker combinations to develop a screening test aimed at detecting precancerous lesions and early CRC stages, based on a multigene assay performed on peripheral blood mononuclear cells (PBMC).Methods: A pilot study was conducted on 92 subjects. Colonoscopy revealed 21 CRC, 30 adenomas larger than 1 cm and 41 healthy controls. A panel of 103 biomarkers was selected by two approaches: a candidate gene approach based on literature review and whole transcriptome analysis of a subset of this cohort by Illumina TAG profiling. Blood samples were taken from each patient and PBMC purified. Total RNA was extracted and the 103 biomarkers were tested by multiplex RT-qPCR on the cohort. Different univariate and multivariate statistical methods were applied on the PCR data and 60 biomarkers, with significant p-value (< 0.01) for most of the methods, were selected.Results: The 60 biomarkers are involved in several different biological functions, such as cell adhesion, cell motility, cell signaling, cell proliferation, development and cancer. Two distinct molecular signatures derived from the biomarker combinations were established based on penalized logistic regression to separate patients without lesion from those with CRC or adenoma. These signatures were validated using bootstrapping method, leading to a separation of patients without lesion from those with CRC (Se 67%, Sp 93%, AUC 0.87) and from those with adenoma larger than 1cm (Se 63%, Sp 83%, AUC 0.77). In addition, the organ and disease specificity of these signatures was confirmed by means of patients with other cancer types and inflammatory bowel diseases.Conclusions: The two defined biomarker combinations effectively detect the presence of CRC and adenomas larger than 1 cm with high sensitivity and specificity. A prospective, multicentric, pivotal study is underway in order to validate these results in a larger cohort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cells have originally been identified based on their capacity to kill transformed cells in a seemingly non-specific fashion. Over the last 15 years, knowledge on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. One of these receptor ligand systems, the NKG2D pathway, has received particular attention, and now serves as a paradigm for how the immune system is able to gather information about the health status of autologous host cells. In addition to its significance on NK cells, NKG2D, as well as other NK cell receptors, play significant roles on T cells. This review aims at summarizing recent insights into the regulation of NKG2D function, the control over NKG2D ligand expression and the role of NKG2D in tumor immunity. Finally, we will discuss first attempts to exploit NKG2D function to improve immunity to tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve.