880 resultados para calix[4]arenes, calix[8]arenes, self-assembly
Resumo:
合成了标题酞菁铜衍生物,并通过元素分析,高压液相色谱,紫外光谱,红外光谱,核磁共振谱,电镜,顺磁共振谱及质谱加以确认。该化合物在稀氯仿溶液和LB膜中各以单,双分子缔合的形式存在。Z型沉积形成的单层LB膜对氨气有很高的灵敏度和选择性。
Resumo:
A new continuous configuration time-dependent self-consistent field method has been developed to study polyatomic dynamical problems by using the discrete variable representation for the reaction system, and applied to a reaction system coupled to a bath. The method is very efficient because the equations involved are as simple as those in the traditional single configuration approach, and can account for the correlations between the reaction system and bath modes rather well. (C) American Institute of Physics.
Resumo:
Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.
Resumo:
Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia Clínica e da Saúde.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
This thesis explores a new method to fabricate SERS detection platforms formed by large area self-assembled Au nanorod arrays. For the fabrication of these new SERS platforms a new droplet deposition method for the self-assembly of Au nanorods was developed. The method, based in the controlled evaporation of organic suspensions of Au nanorods, was used for the fabrication of horizontal and vertical arrays of Au nanorods over large areas (100μm2). The fabricated nanorods arrays showed a high degree of order measured by SEM and optical microscopy over mm2 areas, but unfortunately they detached from the support when immersed in any analyte solutions. In order to improve adhesion of arrays to the support and clean off residual organic matter, we introduced an additional stamping process. The stamping process allows the immobilization of the arrays on different flexible and rigid substrates, whose feasibility as SERS platforms were tested satisfactory with the model molecule 4ABT. Following the feasibility study, the substrates were used for the detection of the food contaminant Crystal Violet and the drug analogue Benzocaine as examples of recognition of health menaces in real field applications.
Resumo:
Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H
Resumo:
We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.
Resumo:
There are several factors which make the investigation and understanding of nanoscale ferroelectrics particularly timely and important. Firstly, there is a market pressure, primarily from the electronics industry, to integrate ferroelectrics into devices with progressive decreases in size and increases in morphological complexity. This is perhaps best illustrated through the roadmaps for product development in FeRAM (Ferroelectric Randorn Access Memory) where the need for increases in bit density will require a move from 2D planar capacitor structures to 3D trenched capacitors in the next few years. Secondly, there is opportunity for novel exploration, as it is only relatively recently that developments in thin film growth of complex oxides, self-assembly techniques and high-resolution 'top-down' patterning have converged to allow the fabrication of isolated and well-defined ferroelectric nanoshapes, the properties of which are not known. Thirdly, there is an expectation that the behaviour of small scale ferroelectrics will be different from bulk, as this group of functional materials is highly sensitive to boundary/surface conditions, which are expected to dominate the overall response when sizes are reduced into the nanoscale regime. This feature article attempts to introduce some of the current areas of discovery and debate surrounding studies on ferroelectrics at the nanoscale. The focus is directed primarily at the search for novel size-related properties and behaviour which are not necessarily observed in bulk.
Resumo:
The first enantiopure 4,4'-bipyridyls, 6, 8, and 9 have been prepared in four or five steps via bacterial dioxygenase-catalysed cis-dihydroxylation of 4-chloroquinoline 1 and C-C coupling; ligands 6 and 9 are found to be effective building blocks for the preparation of chiral metal-organic frameworks as demonstrated with the rational synthesis of two pillared-grid structures [Zn-2(fumarate)(2)(L)], which exhibit interesting structural and dynamic aspects.
Resumo:
N-Alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)-imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2-thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl] counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight to twenty carbon atoms (n =8. 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal. columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the Molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic: liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour Purity.
Resumo:
Objective: To describe the prevalence and determinants of psychological problems in European children with hemiplegia. Design: Cross-sectional survey. Setting: Home visits in nine European regions by research associates who administered standard questionnaires to parents. Patients: 279 children with hemiplegia aged 8–12 years were recruited from population-based case registers. Outcome measure: Strengths and Difficulties Questionnaire comprising emotion, conduct, hyperactivity, peer problems and prosocial domains. An “impact score” (IS) measures the social and psychological impact of the child’s difficulties. Results: Children with hemiplegia had higher mean scores on the total difficulties score (TDS) compared with a normative sample (p<0.001). 48% and 57% of children, respectively, had borderline–abnormal TDS and IS. Significant, independent associations were observed between intellectual impairment and an increased risk for hyperactivity (odds ratio; OR 8.4, 95% CI 3.4 to 20.8), peer problems (OR 3.1, 95% CI 1.7 to 5.5), psychological and social impact (OR 3.0, 95% CI 1.6 to 5.6) when children with an intellectual quotient (IQ) <50 were compared with those with an IQ >70. Boys had an increased risk for conduct (OR 2.1, 95% CI 1.2 to 3.7) and hyperactivity disorders (OR 2.5, 95% CI 1.4 to 4.6). Poor self-esteem was associated with an increased risk for peer problems (OR 5.8, 95% CI 2.5 to 13.4) and poor prosocial skills (OR 7.5, 95% CI 2.4 to 23.2) compared with those with high self-esteem. Other determinants of psychological adjustment were impaired communication, severe pain and living with a single parent. Conclusions: Many of the psychological problems identified are amenable to treatment. Special attention should be given to those at highest risk of developing psychological difficulties.
Resumo:
Current trends in the development of microstructured reactors with thin catalytic films (from 100 nm up to several microns) that have self-assembled nanostructures are discussed. A major technique that is used to prepare such films is sol-gel processing. This involves depositing a complex fluid on a microstructured substrate by dip, spin, or spray coating, followed by surfactant removal to form the porous nanostructures. A novel methodology has been developed by which a uniform coating containing controlled amounts of (poly) metallic nanoparticles can be obtained. This elegant strategy is based on the condensation of metal oxide species by self-assembly in the presence of metallic colloids. The potential microreactor applications brought forth by this innovative protocol are placed in perspective in the light of its versatility.
Resumo:
The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures(1-3). Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches(4-6).