921 resultados para blood flow and vascular resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein L1 in plasma is associated with high- density lipoprotein. Novel APOL1 polymorphisms are investigated along with the association of two common haplotypes (Lys166Glu, Ile244Met, Lys271Arg) with circulating lipid and glucose levels. Although the amino acid substitutions occur in the amphipathic alpha helices region involved in lipid binding, these substitutions were found not to independently account for variability in circulating lipid and glucose levels in 149 middle age males.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine whether age-related increase in concentrations of circulating inflammatory mediators is due to concurrent increases in cardiovascular risk factors or is independent of these. Methods and results: Cytokines (IL-6, IL-18), chemokines (6Ckine, MCP-1, IP-10), soluble adhesion molecules (sICAM-1, sVCAM-1, sE-selectin) and adipokines (adiponectin) were measured in the plasma of healthy male subjects aged 18-84 years (n = 162). These were related to known cardiovascular risk factors (age, BMI, systolic and diastolic blood pressure, plasma total cholesterol, LDL cholesterol, HDL cholesterol and triacylglycerol concentrations) in order to identify significant associations. Plasma concentrations of sVCAM-1, sE-selectin, IL-6, IL-18, MCP-1, 6Ckine, IP-10 and adiponectin, but not sICAM-1, were significantly positively correlated with age, as well as with several other cardiovascular risk factors. The correlations with other risk factors disappeared when age was controlled for. In contrast, the correlations with age remained significant for sVCAM-1, IL-6, MCP-1, 6Ckine and IP-10 when other cardiovascular risk factors were controlled for. Conclusions: Plasma concentrations of some inflammatory markers (sVCAM-1, IL-6, MCP-L 6Ckine, IP-10) are positively correlated with age, independent of other cardiovascular risk factors. This suggests that age-related inflammation may not be driven by recognised risk factors. (C) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the past 20 years, the focuses of public health strategies for reducing the risk of cardiovascular disease (CVD) have been aimed at lowering cholesterol levels. However recent findings have highlighted not only cholesterol but also triacylglycerol as a lipid risk factor for CVD. Dietary strategies which are able to reduce these circulating lipid levels, but which are able to offer long-term efficacy comparable with effective drug treatments, are currently being sought. One dietary strategy that has been proposed to benefit the lipid profile involves the supplementation of the diet with probiotics (Part 1), prebiotics and synbiotics (Part 2), which are mechanisms to improve the health of the host by supplementation and/or fortification of certain health promoting gut bacteria. Probiotics in the form of fermented milk products have been shown to have cholesterol-lowering properties, whereas non-digestible fermentable prebiotics have been shown to reduce triacylglycerol levels in animal studies. However in humans studies, there have been inconsistent findings with respect to changes in lipid levels with both prebiotics and probiotics although on the whole there have been favourable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the past 20 years, the focuses of public health strategies for reducing the risk of cardiovascular disease (CVD) have been aimed at lowering cholesterol levels. However, recent findings have highlighted not only cholesterol but also triacylglycerol as a lipid risk factor for CVD. Dietary strategies which are able to reduce these Circulating lipid levels, but which are able to offer longterm efficacy comparable with effective drug treatments, are currently being sought. One dietary strategy that has been proposed to benefit the lipid profile involves the supplementation of the diet with probiotics (Part 1) prebiotics and synbiotics (Part 2), which are mechanisms to improve the health of the host by supplementation and/or fortification of certain health promoting gut bacteria. Probiotics in the form of fermented milk products have been shown to have cholesterol-lowering properties, whereas non-digestible fermentable prebiotics have been shown to reduce triacylglycerol levels in animal studies, However, in human studies, there have been inconsistent findings with respect to changes in lipid levels with both prebiotics and probiotics although on the whole there have been favourable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in highfat-fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not wholebody, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet-induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of dietary quercetin supplementation on blood lipids and TNF-alpha levels according to the apoE genotype in apoE3 and apoE4 targeted gene replacement mice. In a two-factorial design female apoE3 and apoE4 mice were fed semi-synthetic diets without (controls) and with quercetin (2 mg/g diet) for 6 weeks. Feeding the quercetin-supplemented diets significantly increased plasma levels of quercetin and isorhamnetin both in apoE3 and apoE4 mice. There was no significant effect of apoE genotype on plasma quercetin levels. ApoE3 and apoE4 transgenic mice exhibited similar plasma levels of apoE and cholesterol which were not significantly affected by dietary quercetin supplementation. In mice receiving the basal diet without quercetin supplementation, levels of TNF-alpha in whole blood stimulated ex vivo with lipopolysaccharide were higher in apoE3 as compared to apoE4 transgenic mice. Dietary quercetin significantly lowered levels of TNF-alpha by 44% in apoE3 mice relative to apoE3 mice receiving the unsupplemented diets. In apoE4 mice a moderate (20%) but not significant decrease in TNF-alpha levels in response to the quercetin supplementation was evident. Following quercetin supplementation TNF-alpha levels were similar between apoE3 and apoE4 transgenic mice. Current findings indicate that apoE3 mice are more responsive to the TNF-alpha lowering properties of dietary quercetin supplementation as compared to apoE4 animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish and fish oil-rich sources of long-chain n-3 fatty acids have been shown to be cardio-protective, through a multitude of different pathways including effects on arrythymias, endothelial function, inflammation and thrombosis, as well as modulation of both the fasting and postprandial blood lipid profile. To date the majority of studies have examined the impact of EPA and DHA fed simultaneously as fish or fish oil supplements. However, a number of recent studies have compared the relative biopotency of EPA v. DHA in relation to their effect on blood lipid levels. Although many beneficial effects of fish oils have been demonstrated, concern exists about the potential deleterious impact of EPA and DHA on LDL-cholesterol, with a highly-heterogenous response of this lipid fraction reported in the literature. Recent evidence suggests that apoE genotype may be in part responsible. In the present review the impact of EPA and DHA on cardiovascular risk and the blood lipoprotein profile will be considered, with a focus on the apoE gene locus as a possible determinant of lipid responsiveness to fish oil intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replicate lines of Drosophila melanogaster have been selected for increased resistance against one of two species of parasitoid wasp, Asobara tabida and Leptopilina boulardi. In both cases, it has been shown that an improved ability to mount an immunological defense against the parasitoid's egg is associated with reduced survival when the larvae are reared under conditions of low resource availability and thus high competition. We show here that in both sets of selected lines, lower competitive ability is associated with reduced rates of larval feeding, as measured by the frequency of retractions of the cephalopharyngeal skeleton. This suggests that the same or similar physiological processes are involved in the trade-off between competition and resistance against either parasitoid and shows how the interaction between adaptations for competition and natural enemy resistance may be mediated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumption of flavonoid-rich foods and beverages has been suggested to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance. Flavonoids mediate these effects via a number of routes, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory, learning and cognitive function. Originally, it was thought that such actions were mediated by the antioxidant capacity of flavonoids. However, their limited absorption and their low bioavailability in the brain suggest that this explanation is unlikely. Instead, this multiplicity of effects appears to be underpinned by three separate processes: first, through their interactions with important neuronal and glial signalling cascades in the brain, most notably the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate pro-survival transcription factors and gene expression; second, through an ability to improve peripheral and cerebral blood flow and to trigger angiogenesis and neurogenesis in the hippocampus; third, by their capacity to directly react with and scavenge neurotoxic species and pro-inflammatory agents produced in the brain as a result of both normal and abnormal brain ageing. The present review explores the potential inhibitory or stimulatory actions of flavonoids within these three systems and describes how such interactions are likely to underlie neurological effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beneficial effects of green tea catechins, such as the proposed improvement in endothelial function, may be influenced by phase II metabolism during and after absorption. The methylation enzyme, catechol-O-methyltransferase (COMT), has a missense mutation rs4680 (G to A), proposed to result in a 40 % reduction in enzyme activity. In the present pilot study, twenty subjects (ten of each homozygous COMT genotype) were recruited. Green tea extract capsules (836 mg green tea catechins) were given in a fasted state, and a high-carbohydrate breakfast was given after 60 min. Blood samples and vascular function measurements were taken at regular intervals. The change in digital volume pulse stiffness index (SI) from baseline was shown to be different between genotype groups at 120 and 240 min, with a lower SI in the GG individuals (P ≤ 0·044). The change in blood pressure from baseline also differed between genotype groups, with a greater increase in systolic (P = 0·023) and diastolic (P = 0·034) blood pressure at 120 min in the GG group. The AA group was shown to have a greater increase in insulin concentrations at 120 min (P = 0·019) and 180 min (P = 0·008) compared with baseline, despite similar glucose profiles. No genotypic differences were found in vascular reactivity measured using laser Doppler iontophoresis, total nitrite, lipids, plasma total antioxidant capacity or inflammatory markers after ingestion of the green tea extract. In conclusion, SI and insulin response to the glucose load differed between the COMT genotype groups, and this may be suggestive of a green tea extract and genotype interaction.