881 resultados para biobased composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effective dielectric responses of graded spherical composites under an external uniform electric field by taking the dielectric function of spherical inclusion, epsilon(i) = cr(k) e(beta r), where r is the inner distance of a point inside the particle from the centre of the spherical particle in the coordination. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites and it is shown that the DEDA is in excellent agreement with the exact result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dielectric response of graded spherical composites having general power-law gradient inclusions is investigated under a uniform applied electric field, where the dielectric gradation profile of the spherical inclusions is modeled by the equation epsilon(i) (r) = c(b+r)(k). Analytical solutions of the local electrical potentials are derived in terms of hyper-geometric function and the effective dielectric response of the graded composites is predicted in the dilute limit. From our result, the local potentials of graded spherical composites having both simple power-law dielectric profile epsilon(i)(r) = cr(k) and linear dielectric profile epsilon(i) (r) = c(b+r) are derived exactly by taking the limits b --> 0 and k --> 1, respectively. In the dilute limit, our exact result is used to test the validity of differential effective dipole approximation (DEDA) for estimating the effective response of graded spherical composites, and it is shown that the DEDA is in excellent agreement with exact result. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under alternating current electric field, effective response of granular nonlinear composites with spherical coated inclusions is investigated in the dilute limit by using the perturbation approach. For an external sinusoidal applied field with finite frequency omega, the local fields and potentials of composites in general consist of components at all harmonics for cubic nonlinear constitutive relationships. We derive the local potentials of spherical coated composites at harmonics. Moreover, we give the formulae of the nonlinear effective AC susceptibility at the third harmonic frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for determining effective dielectric responses of Kerr-like coated nonlinear composites under the alternating current (AC) electric field is proposed by using perturbation approach. As an example, we have investigated the composite with coated cylindrical inclusions randomly embedded in a host under an external sinusoidal field with finite frequency omega. The local field and potential of composites in general consists of components with all harmonic frequencies. The effective nonlinear AC responses at all harmonics are induced by the coated nonlinear composites because of the nonlinear constitutive relation. Moreover, we have derived the formulae of effective nonlinear AC responses at the fundamental frequency and the third harmonic in the dilute limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dielectric responses of linear composites with graded cylindrical particles are investigated under an external uniform electric field. As an example, with the Kummer function, we have obtained the analytical solutions of electric potentials of graded composites with a cylindrical inclusion particle of dielectric function profile epsilon(i) = cr(k)e(betar), where r is the inside distance of a point in cylindrical particle from the original point of cylindrical coordinates. In the dilute limit, the effective dielectric response is derived by means of the mean field method. For larger volume fraction, we have estimated the dielectric response of the graded composites with an effective medium approximation. Furthermore, from our results, we have discussed the effective responses of graded composites for power-law and exponential dielectric function profiles, respectively. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E-1 sin(omegat) + E-3 sin(3omegat) with frequencies omega and 3omega. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dielectric response of linear composites containing graded material is investigated under an applied electric field Eo. For the cylindrical inclusion with gradient dielectric function, epsilon(i)(r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential of the composite media regions, which obeys a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, we have derived the effective dielectric response of the linear composite media. Furthermore, for larger volume fraction, the formulas of effective dielectric response of the graded composite media, are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective dielectric responses of graded cylindrical composites are investigated when an external uniform field is applied to the composites. Considering linear random composites of cylindrical particles with a specific dielectric function, which varies along the radial direction of the particles, we have studied three cases of dielectric profiles: exponential function, linear and power-law profiles. For each case, the effective dielectric response of graded composites is given on the basis of exact solutions of the local potentials of composites in the dilute limit. For a larger volume fraction, we have proposed an effective medium approximation to estimate the effective dielectric response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective dielectric response of composites containing graded material is investigated when an external uniform electric field E-0 is applied to it. For a spherical particle with gradient dielectric constant, epsilon(i) (r) = b + cr, randomly embedded in a host with dielectric constant epsilon(m), we have obtained the exact solution of local electric potential in the composite media regions, which obey a linear constitutive relation D = epsilonE, using hypergeometric function. In dilute limit, the effective dielectric response of the linear graded composite media is derived. Furthermore, for larger volume fraction, we have given an effective medium approximation to estimate the effective dielectric response of the graded composite media. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective thermal conductivity of graded composites with contact resistance on the inclusion surface is investigated. As an example, we have considered the graded composite media with a spherical particle embedded in a homogeneous matrix, where the thermal conductivity of spherical inclusion is an exponential function k(i) = c exp(betar) (where r is the inside distance of a point in particle from the center of the spherical particle in a spherical coordinate). For both heat contact resistance and perfect contact cases, we have given a reasonable effective medium approximation to calculate the effective conductivity. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective property has been investigated theoretically in graded elliptical cylindrical composite's consisting of inhomogeneous graded elliptical cylinders and an isotropic matrix under external uniform electric field. As a theoretical model, the dielectric gradient profile in the elliptical cylinder is modeled by a power-law function of short semi-axis variable parameter (xi(2) - 1) in the elliptical cylindrical coordinates, namely epsilon(i)(xi) = c(k) (xi(2) - 1)(k), where c(k) and k are the parameters, and xi is the long semi-axis space variable in an elliptical cylindrical inclusion region. In the dilute limit, the local analytical potentials in inclusion and matrix regions are derived exactly by means of the hyper-geometric function, and the formulas are given for estimating the effective dielectric responses under the external lfield along (x) over cap- and (y) over cap -directions, respectively. Furthermore, we have demonstrated that our effective response formulas can be reduced to the well-known results of homogeneous isotropic elliptical cylindrical composites if we take the limit k -> 0 in graded elliptical cylindrical composites. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under an external alternating current (ac) field, the effective ac dielectric response of graded composites consisting of the graded cylindrical inclusion having complex permittivity profiles has been investigated theoretically. A model that the dielectric function is assumed to be a constant while the conductivity has a power-law dependence on the radial variable r, namely epsilon(i)(r) = A + cr(k)/i omega. is studied and the local analytical potentials of the inclusion and the host regions are derived in terms of hyper-geometric function. In the dilute limit, the effective ac dielectric response is predicted. Meanwhile, we have given the exact proof of the differential effective dipole approximation (DEDA) method, which is suitable to arbitrary graded profiles. Furthermore, we have given the analytical potentials and the effective ac dielectric responses of coated graded cylindrical composites for two cases, case (a) graded core and case (b) graded coated layer, having the graded dielectric profiles, respectively. (c) 2005 Elsevier B.V. All rights reserved.