977 resultados para benthic infauna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specimens of Bolivina argentea and Bulimina marginata, two widely distributed temperate benthic foraminiferal species, were cultured at constant temperature and controlled pCO2 (ambient, 1000 ppmv, and 2000 ppmv) for six weeks to assess the effect of elevated atmospheric CO2 concentrations on survival and fitness using Adenosine Triphosphate (ATP) analyses and on shell microfabric using high-resolution SEM and image analysis. To characterize the carbonate chemistry of the incubation seawater, total alkalinity and dissolved inorganic carbon were measured approximately every two weeks. Survival and fitness were not directly affected by elevated pCO2 and the concomitant decrease in seawater pH and calcite saturation states (Omega c), even when seawater was undersaturated with respect to calcite. These results differ from some previous observations that ocean acidification can cause a variety of effects on benthic foraminifera, including test dissolution, decreased growth, and mottling (loss of symbiont color in symbiont-bearing species), suggesting that the benthic foraminiferal response to ocean acidification may be species specific. If so, this implies that ocean acidification may lead to ecological winners and losers even within the same taxonomic group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80 % of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark gray laminated silty claystones (Unit II) drilled at Site 901 contain Tithonian benthic foraminifer assemblages that indicate a neritic depositional environment and probably dysaerobic bottom-water conditions. Three benthic foraminifer zones are distinguished within Unit II. The upper part of the unit is dominated by Spirillina polygyrata, contains Globospirillina spp. (Samples 149-901A-3R-1, 10-12 cm, to 149-901A-3R-1, 75-77 cm) and is interpreted as late Tithonian. Samples 149-901A-3R-1, 87-89 cm, to 149-901A-6R-1, 74-76 cm, contain Epistomina uhligi and Lingulina franconica and are probably early Tithonian. The early Tithonian Neobulimina atlantica Zone is characterized by the occurrence of the zonal marker and Epistomina uhligi and reaches from Sample 149-901A-6R-1, 128-130 cm, to the base of the drilled-sequence. The sediments and benthic foraminiferal assemblage characteristics of the Tithonian-aged sequence in Hole 901A are unknown elsewhere in the Atlantic and may represent deposition in a marginal shelf basin with increased terrigenous and organic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SIMBAA is a spatially explicit, individual-based simulation model. It was developed to analyse the response of populations of Antarctic benthic species and their diversity to iceberg scouring. This disturbance is causing a high local mortality providing potential space for new colonisation. Traits can be attributed to model species, e.g. in terms of reproduction, dispersal, and life span. Physical disturbances can be designed in space and time, e.g. in terms of size, shape, and frequency. Environmental heterogeneity can be considered by cell-specific capacities to host a certain number of individuals. When grid cells become empty (after a disturbance event or due to natural mortality of of an individual), a lottery decides which individual from which species stored in a pool of candidates (for this cell) will recruit in that cell. After a defined period the individuals become mature and their offspring are dispersed and stored in the pool of candidates. The biological parameters and disturbance regimes decide on how long an individual lives. Temporal development of single populations of species as well as Shannon diversity are depicted in the main window graphically and primary values are listed. Examples for simulations can be loaded and saved as sgf-files. The results are also shown in an additional window in a dimensionless area with 50 x 50 cells, which contain single individuals depicted as circles; their colour indicates the assignment to the self-designed model species and the size represents their age. Dominant species per cell and disturbed areas can also be depicted. Output of simulation runs can be saved as images, which can be assembled to video-clips by standard computer programs (see GIF-examples of which "Demo 1" represents the response of the Antarctic benthos to iceberg scouring and "Demo 2" represents a simulation of a deep-sea benthic habitat).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new method for the quantitative reconstruction of upper ocean flows for during times in the past. For the warm (T>5°C) surface ocean, density can be accurately reconstructed from calcite precipitated in equilibrium with seawater, as both of these properties increase with decreasing temperature and increasing salinity. Vertical density profiles can be reconstructed from the oxygen isotopic composition of benthic foraminifera. The net volume transport between two vertical density profiles can be calculated using the geostrophic method. Using benthic foraminifera from surface sediment samples from either side of the Florida Straits (Florida Keys and Little Bahama Bank), we reconstruct two vertical density profiles and calculate a volume transport of 32 Sv using this method. This agrees well with estimates from physical oceanographic methods of 30-32 Sv for the mean annual volume transport. We explore the sensitivity of this technique to various changes in the relationship between temperature and salinity as well as salinity and the oxygen isotopic composition of seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope data are presented for Sites 1014 (Tanner Basin, 1176 m) and 1020 (Gorda Ridge, 3040 m) to constrain past changes in Pacific deep- and intermediate-water nutrient chemistry associated with the onset of large-amplitude 100-k.y. climate cycles after ~900 ka. The Site 1014 data were based on analyses of separate species of Cibicidoides, whereas only Cibicidoides wuellerstorfi was used to generate the Site 1020 record. The present data span 380-920 and 620-950 ka at Sites 1014 and 1020, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical climate is variable on astronomical time scale, driving changes in surface and deep-sea fauna during the Pliocene-Pleistocene. To understand these changes in the tropical Indian Ocean over the past 2.36 Myr, we quantitatively analyzed deep-sea benthic foraminifera and selected planktic foraminifera from >125 µm size fraction from Deep Sea Drilling Project Site 219. The data from Site 219 was combined with published foraminiferal and isotope data from Site 214, eastern Indian Ocean to determine the nature of changes. Factor and cluster analyses of the 28 highest-ranked species distinguished four biofacies, characterizing distinct deep-sea environmental settings. These biofacies have been named after their most dominant species such as Stilostomella lepidula-Pleurostomella alternans (Sl-Pa), Nuttallides umbonifer-Globocassidulina subglobosa (Nu-Gs), Oridorsalis umbonatus-Gavelinopsis lobatulus (Ou-Gl) and Epistominella exigua-Uvigerina hispido-costata (Ee-Uh) biofacies. Biofacies Sl-Pa ranges from ~2.36 to 0.55 Myr, biofacies Nu-Gs ranges from ~1.9 to 0.65 Myr, biofacies Ou-Gl ranges from ~1 to 0.35 Myr and biofacies Ee-Uh ranges from 1.1 to 0.25 Myr. The proxy record indicates fluctuating tropical environmental conditions such as oxygenation, surface productivity and organic food supply. These changes appear to have been driven by changes in monsoonal wind intensity related to glacial-interglacial cycles. A shift at ~1.2-0.9 Myr is observed in both the faunal and isotope records at Site 219, indicating a major increase in monsoon-induced productivity. This coincides with increased amplitude of glacial cycles, which appear to have influenced low latitude monsoonal climate as well as deep-sea conditions in the tropical Indian Ocean.