846 resultados para barium ferrite
Resumo:
This paper describes the stabilizing effect of MgF2 on the binary system InF3-BaF2. A complete investigation of the In-Ba-Mg system led to samples up to 5 mm in thickness. Further optimization of this system was achieved by incorporation of other fluorides, resulting in increased resistance to devitrification. Thermal and optical data are reported.
Resumo:
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
Resumo:
Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.
Resumo:
Ferroelectric barium titanate thin films were produced by the polymeric precursor method. In this technique, the desired metal cations are chelated in a solution using a hydroxycarboxylic acid as the chelating agent. Barium carbonate and titanium IV isopropoxide were used as precursors for the citrate solution. Ethylene glycol and citric acid were used as polymerization/complexation agents for the process. The crystalline structure of the film annealed at 700 °C had a single perovskite phase with a tetragonal structure. The BaTiO3 film showed good P-E hysteresis loops and C-V characteristics due to the switched ferroelectric domains.
Resumo:
The objective of this study was to analyze the erosion of API 5L X65 pipe steel whose microstructure consisted of ferrite and martensite obtained by quenching from intercritical temperature (770 °C). Jet impingement tests with sand-water slurry were used. The changes in mechanical properties, caused by heat treatment carried out, did not induce changes in either the mechanism or erosion resistance. The erosion rate increased with angle of attack until 30° and later decreased until 90°. The microtexture of the eroded surfaces, at angles of attack of 30° and 90°, were similar for both conditions and were composed of craters and platelets at several stages of evolution. The erosion mechanism was by extrusion with the forming and forging of platelets.
Resumo:
Pure BBN powders and with addition of 1 and 2 wt% in excess of bismuth were obtained by Pechini Method. The powders calcined at 300°C/4h were analyzed by TG/DTA to study the temperature of organic matter decomposition. A systematic study of calcination temperature and time to the formation of the BBN phase was performed and the phase formation was accompanied by XRD. The calcined powders at 800°C during 2h were analyzed by infrared spectroscopy and by BET. The powders were isostaticaly pressed and sintered at temperatures ranging from 900°C to 1000°C. The ceramics were characterized by XRD to control the crystalline phase and by SEM to analyze the microstructure.
Resumo:
The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Coated purpose of homogeneous distribution as a second phase is introduced in magnetic systems. Yttrium iron garnet (YIG) shows special interest as magnetic dye, microwave absorber, and magnetic fluids when heterocoagulated by other material. Surface and interface magnetic properties are intimately connected with the new properties of the silica on YIG system. Néel first introduced the concept of surface anisotropy, and Chen et al. developed a model that describes the anisotropy effects at the boundary surface particle, which was applied in this work. Spherical YIG particles were prepared by coprecipitation method and coated with silica using the tetraethylorthosilicate (TEOS) hydrolysis process. The silica-YIG boundary was investigated by transmission electron microscopy. Hysteresis loops comparatively show the profile of the naked and silica-covered YIG particles. The surface anisotropies were calculated using the Chen et al. approach. Indeed, in heterocoagulation systems, the surface anisotropy is a result of the interface symmetry breaking, as observed.
Resumo:
This paper discusses the formation of microstructures with different volume fractions, as an outcome of a specific heat treatment, with the following phases: ferrite, martensite, bainite and retained austenite. For the microstructure characterization it is developed a chemical etching that allows to distinguish the phases by optical microscopy. The evaluation of the mechanical properties is done based on the results of tensile and fatigue tests. The experimental results show that appropriate heat treatments can contribute to a significant improvement in the mechanical properties of the steel. In this process it is essential to control the fraction volume, morphology of the phases, and grain size.
Resumo:
First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
Samples with a composition of 40InF 3-20ZnF 2-5MCl- xBaF 2-ySrF 2, where M=Na, Li and x+y=35 mol%, were prepared. The thermal properties related to the Ba/Sr ratio and to the remaining chlorine content in the glasses were studied. Thermal stability is improved with the addition of chlorine. However, chlorine concentration is regulated by the sublimation of indium fluorides which takes place at about 600°C. Indium fluorides arc formed during glass fusion. The mechanisms of chlorine sublimation were studied. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
The microstructure and dielectric properties of Nb-Mn or Sb-Mn codoped BaTiO3 compositions were investigated. Starting ceramics powders were prepared by Pechini method. The composites were sintered at 1310°C and 1330°C in an air atmosphere for two hours. The microstructure and compositional investigations were done with SEM equipped with EDS. Two distinguish microstructure regions are observed in Nb/0.05Mn doped BaTiO 3 ceramics sintered at low temperature. The first, large one, with grain sizes from 5-40 μm and the second region with small grain sizes from 1 to 5 μm. Sintering at higher temperature, independent of Mn content, enables to achieve a uniform microstructure with grains less than 6 μm. In Sb/Mn doped ceramics, for both sintering temperatures, bimodal microstructures with fine grained matrix and grains up to 10 μm is formed. The highest value of permittivity at room temperature and the greatest change of permittivity in function of temperature are observed in Nb/0.01Mn doped ceramics compared to the same ones in Sb/Mn doped ceramics. The greatest shift of Curie temperature towards lower temperature has been noticed in Sb/Mn BaTiO3 ceramics compared to others samples. In all investigated samples the dielectric loss after initially large values at low frequency maintains a constant value for f>3 kHz.
Resumo:
Aim: the aim of this study is to assess and locate the Foramen of Huschke. Study design: anatomical. Material and Method: using contrast material like gutta-percha and barium sulfate, through extraoral radiographs, such as panoramic, submental vertex and corrected saggital linear Temporal Mandibular Joint tomograms in four skulls where we clinically checked the existence of foramen of Huschke. Results: The results proved that the foramen of Huschke can be observed in skulls submitted to contrast using radiographic techniques.