804 resultados para arduino risparmio energetico wireless sensor network
Resumo:
BACKGROUND The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer's disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors' and caregivers' awareness of the patient's cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient's ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient's home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (e.g., via smartphone). OBJECTIVE We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient's attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. METHODS The components of this novel assistive technology system were wireless sensors distributed in every room of the participant's home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified. RESULTS In this study, 10 healthy participants (6 women, 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). CONCLUSIONS The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.
Resumo:
Energy consumption modelling by state based approaches often assume constant energy consumption values in each state. However, it happens in certain situations that during state transitions or even during a state the energy consumption is not constant and does fluctuate. This paper discusses those issues by presenting some examples from wireless sensor and wireless local area networks for such cases and possible solutions.
Resumo:
We propose an optimization-based framework to minimize the energy consumption in a sensor network when using an indoor localization system based on the combination of received signal strength (RSS) and pedestrian dead reckoning (PDR). The objective is to find the RSS localization frequency and the number of RSS measurements used at each localization round that jointly minimize the total consumed energy, while ensuring at the same time a desired accuracy in the localization result. The optimization approach leverages practical models to predict the localization error and the overall energy consumption for combined RSS-PDR localization systems. The performance of the proposed strategy is assessed through simulation, showing energy savings with respect to other approaches while guaranteeing a target accuracy.
Resumo:
La Internet de las Cosas (IoT), como parte de la Futura Internet, se ha convertido en la actualidad en uno de los principales temas de investigación; en parte gracias a la atención que la sociedad está poniendo en el desarrollo de determinado tipo de servicios (telemetría, generación inteligente de energía, telesanidad, etc.) y por las recientes previsiones económicas que sitúan a algunos actores, como los operadores de telecomunicaciones (que se encuentran desesperadamente buscando nuevas oportunidades), al frente empujando algunas tecnologías interrelacionadas como las comunicaciones Máquina a Máquina (M2M). En este contexto, un importante número de actividades de investigación a nivel mundial se están realizando en distintas facetas: comunicaciones de redes de sensores, procesado de información, almacenamiento de grandes cantidades de datos (big--‐data), semántica, arquitecturas de servicio, etc. Todas ellas, de forma independiente, están llegando a un nivel de madurez que permiten vislumbrar la realización de la Internet de las Cosas más que como un sueño, como una realidad tangible. Sin embargo, los servicios anteriormente mencionados no pueden esperar a desarrollarse hasta que las actividades de investigación obtengan soluciones holísticas completas. Es importante proporcionar resultados intermedios que eviten soluciones verticales realizadas para desarrollos particulares. En este trabajo, nos hemos focalizado en la creación de una plataforma de servicios que pretende facilitar, por una parte la integración de redes de sensores y actuadores heterogéneas y geográficamente distribuidas, y por otra lado el desarrollo de servicios horizontales utilizando dichas redes y la información que proporcionan. Este habilitador se utilizará para el desarrollo de servicios y para la experimentación en la Internet de las Cosas. Previo a la definición de la plataforma, se ha realizado un importante estudio focalizando no sólo trabajos y proyectos de investigación, sino también actividades de estandarización. Los resultados se pueden resumir en las siguientes aseveraciones: a) Los modelos de datos definidos por el grupo “Sensor Web Enablement” (SWE™) del “Open Geospatial Consortium (OGC®)” representan hoy en día la solución más completa para describir las redes de sensores y actuadores así como las observaciones. b) Las interfaces OGC, a pesar de las limitaciones que requieren cambios y extensiones, podrían ser utilizadas como las bases para acceder a sensores y datos. c) Las redes de nueva generación (NGN) ofrecen un buen sustrato que facilita la integración de redes de sensores y el desarrollo de servicios. En consecuencia, una nueva plataforma de Servicios, llamada Ubiquitous Sensor Networks (USN), se ha definido en esta Tesis tratando de contribuir a rellenar los huecos previamente mencionados. Los puntos más destacados de la plataforma USN son: a) Desde un punto de vista arquitectónico, sigue una aproximación de dos niveles (Habilitador y Gateway) similar a otros habilitadores que utilizan las NGN (como el OMA Presence). b) Los modelos de datos están basado en los estándares del OGC SWE. iv c) Está integrado en las NGN pero puede ser utilizado sin ellas utilizando infraestructuras IP abiertas. d) Las principales funciones son: Descubrimiento de sensores, Almacenamiento de observaciones, Publicacion--‐subscripcion--‐notificación, ejecución remota homogénea, seguridad, gestión de diccionarios de datos, facilidades de monitorización, utilidades de conversión de protocolos, interacciones síncronas y asíncronas, soporte para el “streaming” y arbitrado básico de recursos. Para demostrar las funcionalidades que la Plataforma USN propuesta pueden ofrecer a los futuros escenarios de la Internet de las Cosas, se presentan resultados experimentales de tres pruebas de concepto (telemetría, “Smart Places” y monitorización medioambiental) reales a pequeña escala y un estudio sobre semántica (sistema de información vehicular). Además, se está utilizando actualmente como Habilitador para desarrollar tanto experimentación como servicios reales en el proyecto Europeo SmartSantander (que aspira a integrar alrededor de 20.000 dispositivos IoT). v Abstract Internet of Things, as part of the Future Internet, has become one of the main research topics nowadays; in part thanks to the pressure the society is putting on the development of a particular kind of services (Smart metering, Smart Grids, eHealth, etc.), and by the recent business forecasts that situate some players, like Telecom Operators (which are desperately seeking for new opportunities), at the forefront pushing for some interrelated technologies like Machine--‐to--‐Machine (M2M) communications. Under this context, an important number of research activities are currently taking place worldwide at different levels: sensor network communications, information processing, big--‐ data storage, semantics, service level architectures, etc. All of them, isolated, are arriving to a level of maturity that envision the achievement of Internet of Things (IoT) more than a dream, a tangible goal. However, the aforementioned services cannot wait to be developed until the holistic research actions bring complete solutions. It is important to come out with intermediate results that avoid vertical solutions tailored for particular deployments. In the present work, we focus on the creation of a Service--‐level platform intended to facilitate, from one side the integration of heterogeneous and geographically disperse Sensors and Actuator Networks (SANs), and from the other the development of horizontal services using them and the information they provide. This enabler will be used for horizontal service development and for IoT experimentation. Prior to the definition of the platform, we have realized an important study targeting not just research works and projects, but also standardization topics. The results can be summarized in the following assertions: a) Open Geospatial Consortium (OGC®) Sensor Web Enablement (SWE™) data models today represent the most complete solution to describe SANs and observations. b) OGC interfaces, despite the limitations that require changes and extensions, could be used as the bases for accessing sensors and data. c) Next Generation Networks (NGN) offer a good substrate that facilitates the integration of SANs and the development of services. Consequently a new Service Layer platform, called Ubiquitous Sensor Networks (USN), has been defined in this Thesis trying to contribute to fill in the previous gaps. The main highlights of the proposed USN Platform are: a) From an architectural point of view, it follows a two--‐layer approach (Enabler and Gateway) similar to other enablers that run on top of NGN (like the OMA Presence). b) Data models and interfaces are based on the OGC SWE standards. c) It is integrated in NGN but it can be used without it over open IP infrastructures. d) Main functions are: Sensor Discovery, Observation Storage, Publish--‐Subscribe--‐Notify, homogeneous remote execution, security, data dictionaries handling, monitoring facilities, authorization support, protocol conversion utilities, synchronous and asynchronous interactions, streaming support and basic resource arbitration. vi In order to demonstrate the functionalities that the proposed USN Platform can offer to future IoT scenarios, some experimental results have been addressed in three real--‐life small--‐scale proofs--‐of concepts (Smart Metering, Smart Places and Environmental monitoring) and a study for semantics (in--‐vehicle information system). Furthermore we also present the current use of the proposed USN Platform as an Enabler to develop experimentation and real services in the SmartSantander EU project (that aims at integrating around 20.000 IoT devices).
Resumo:
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Resumo:
In recent future, wireless sensor networks (WSNs) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of WSNs facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers (DCs). The high economical and environmental impact of the energy consumption in DCs requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of WSNs: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of DCs: energy-optimal workload assignment policies in heterogeneous DCs, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
In recent future, wireless sensor networks ({WSNs}) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of {WSNs} facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers ({DCs}). The high economical and environmental impact of the energy consumption in {DCs} requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of {WSNs}: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of {DCs}: energy-optimal workload assignment policies in heterogeneous {DCs}, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
Energy Efficiency is one of the goals of the Smart Building initiatives. This paper presents an Open Energy Management System which consists of an ontology-based multi-technology platform and a wireless transducer network using 6LoWPAN communication technology. The system allows the integration of several building automation protocols and eases the development of different kind of services to make use of them. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
The implementation of wireless communication systems in rural areas through the deployment of data networks in infrastructure mode is often inadequate due to its high cost and no fault tolerant centralized structure. Mesh networks can overcome these limitations while increases the coverage area in a more flexible way. This paper proposes the performance evaluation of the routing protocols IEEE 802.11s and Batman-Adv on an experimental wireless mesh network deployed in a rural environment called Lachocc, which is a community located at 4700 MASL in the Huancavelica region in Peru. The evaluation was based on the measurement of quality of service parameters such as bandwidth, delay and delay variation. As a result, it was determined that both protocols offer a good performance, but in most of the cases, Batman-Adv provides slightly better performance
Resumo:
Variabilities associated with CMOS evolution affect the yield and performance of current digital designs. FPGAs, which are widely used for fast prototyping and implementation of digital circuits, also suffer from these issues. Proactive approaches start to appear to achieve self-awareness and dynamic adaptation of these devices. To support these techniques we propose the employment of a multi-purpose sensor network. This infrastructure, through adequate use of configuration and automation tools, is able to obtain relevant data along the life cycle of an FPGA. This is realised at a very reduced cost, not only in terms of area or other limited resources, but also regarding the design effort required to define and deploy the measuring infrastructure. Our proposal has been validated by measuring inter-die and intra-die variability in different FPGA families.
Resumo:
This paper presents an Ontology-Based multi-technology platform as part of an open energy management system which also comprises a wireless transducer network for control and monitoring. The platform allows the integration of several building automation protocols, eases the development and implementation of different kinds of services and allows sharing of the data of a building. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
In this work, the power management techniques implemented in a high-performance node for Wireless Sensor Networks (WSN) based on a RAM-based FPGA are presented. This new node custom architecture is intended for high-end WSN applications that include complex sensor management like video cameras, high compute demanding tasks such as image encoding or robust encryption, and/or higher data bandwidth needs. In the case of these complex processing tasks, yet maintaining low power design requirements, it can be shown that the combination of different techniques such as extensive HW algorithm mapping, smart management of power islands to selectively switch on and off components, smart and low-energy partial reconfiguration, an adequate set of save energy modes and wake up options, all combined, may yield energy results that may compete and improve energy usage of typical low power microcontrollers used in many WSN node architectures. Actually, results show that higher complexity tasks are in favor of HW based platforms, while the flexibility achieved by dynamic and partial reconfiguration techniques could be comparable to SW based solutions.
Resumo:
In this work a complete hardware-software support platform for a WSN testbed focused on developing wireless sensor applications in a simple and intuitive way is presented, as an alternative of commercial-motes-based testbeds that can be found in the state of the art. The main target of this hardware-software platform is to provide the highest abstraction level on the management of WSNs but in the simplest way in order to achieve a fast profiling mechanism for reliable prototyping based on the Cookies platform as well as helping users to develop, test and validate Cookie-Based WSN applications.
Resumo:
En las últimas décadas el mundo ha sufrido un aumento exponencial en la utilización de soluciones tecnológicas, lo que ha desembocado en la necesidad de medir situaciones o estados de los distintos objetos que nos rodean. A menudo, no es posible cablear determinados sensores por lo que ese aumento en la utilización de soluciones tecnológicas, se ha visto traducido en un aumento de la necesidad de utilización de sensórica sin cables para poder hacer telemetrías correctas. A nivel social, el aumento de la demografía mundial está estrechamente ligado al aumento de la necesidad de servicios tecnológicos, por lo que es lógico pensar que a más habitantes, más tecnología será consumida. El objetivo de este Proyecto Final de Carrera está basado en la utilización de diversos nodos o también llamados motas capaces de realizar transferencia de datos en modo sin cables, permitiendo así realizar una aplicación real que solvente problemas generados por el aumento de la densidad de población. En concreto se busca la realización de un sistema de aparcamiento inteligente para estacionamientos en superficie, ayudando por tanto a las tareas de ordenación vehicular dentro del marco de las Smart cities. El sistema está basado en el protocolo de comunicaciones 802.15.4 (ZigBee) cuyas características fundamentales radican en el bajo consumo de energía de los componentes hardware asociados. En primer lugar se realizará un Estado del Arte de las Redes Inalámbricas de Sensores, abordando tanto la arquitectura como el estándar Zigbee y finalmente los componentes XBee que se van a utilizar en este Proyecto. Seguidamente se realizará la algoritmia necesaria para el buen funcionamiento del sistema inteligente de estacionamiento y finalmente se realizará un piloto demostrador del correcto funcionamiento de la tecnología. ABSTRACT In the last decades the world has experienced an exponential increase in the use of technological solutions, which has resulted in the need to measure situations or states of the objects around us. Often, wired sensors cannot be used at many situations, so the increase in the use of technological solutions, has been translated into a increase of the need of using wireless sensors to make correct telemetries. At the social level, the increase in global demographics is closely linked to the increased need for technological services, so it is logical that more people, more technology will be consumed. The objective of this Final Project is based on the use of various nodes or so-called motes, capable of performing data transfer in wireless mode, thereby allowing performing a real application solving problems generated by the increase of population densities. Specifically looking for the realization of a smart outdoor parking system, thus helping to vehicular management tasks within the framework of the Smart Cities. The system is based on the communication protocol 802.15.4 (ZigBee) whose main characteristics lie in the low energy consumption associated to the hardware components. First there will be a State of the Art of Wireless Sensor Networks, addressing both architecture and finally the Zigbee standard XBee components to be used in this project. Then the necessary algorithms will be developed for the proper working of the intelligent parking system and finally there will be a pilot demonstrator validating the whole system.