961 resultados para angiotensin converting enzyme inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms involved in the development of pulmonary silicosis have not been well defined, however most current evidence implicates a central role for alveolar macrophages in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in alveolar macrophage (AM). The overall goal of this study was to determine the mechanism of silica-induced apoptosis of AM. Human AM were treated with fibrogenic, poorly fibrogenic and nonfibrogenic model particulates, such as, silica, amorphous silica and titanium dioxide, respectively (equal surface area). Treatment with silica resulted in apoptosis in human AM as observed by morphology, DNA fragmentation and Cell Death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitors, polyinosinic acid (Poly I), fucoidan and high density lipoprotein (HDL), prior to silica treatment. Pretreatment with Poly I and fucoidan resulted in significant inhibition of silica-induced apoptosis suggesting that silica-induced AM apoptosis is mediated via the SR. Further, we examined the involvement of interleukin converting enzyme (ICE) family of proteases in silica-mediated apoptosis. Silica activated ICE, Ich-1L, cpp32 beta and cleavage of PARP. Taken together, these results suggested that (1) fibrogenic particulates, such as, silica caused apoptosis of alveolar macrophages, (2) this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis, (3) silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, and (4) silica-induced apoptosis involves the activation of the ICE family of proteases. An understanding of the molecular events involved in fibrogenic particulate-induced apoptosis may provide a useful insight into the mechanism involved in particulate-induced fibrosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ETS1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. ETS1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. The ETS1 gene generates two proteins, p51 and a spliced variant, p42, lacking exon VII. In this paper we show that p42-ETS1 expression bypasses the damaged Fas-induced apoptotic pathway in DLD1 colon carcinoma cells by up-regulating interleukin 1β-converting enzyme (ICE)/caspase-1 and causes these cancer cells to become susceptible to the effects of the normal apoptosis activation system. ICE/caspase-1 is a redundant system in many cells and tissues, and here we demonstrate that it is important in activating apoptosis in cells where the normal apoptosis pathway is blocked. Blocking ICE/caspase-1 activity by using specific inhibitors of this protease prevents the p42-ETS1-induced apoptosis from occurring, indicating that the induced ICE/caspase-1 enzyme is responsible for killing the cancer cells. p42-ETS1 activates a critical alternative apoptosis pathway in cancer cells that are resistant to normal immune attack, and thus it may be useful as an anticancer therapeutic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M1 myeloid leukemic cells overexpressing wild-type p53 undergo apoptosis. This apoptosis can be suppressed by some cytokines, protease inhibitors, and antioxidants. We now show that induction of apoptosis by overexpressing wild-type p53 is associated with activation of interleukin-1β-converting enzyme (ICE)-like proteases, resulting in cleavage of poly(ADP- ribose) polymerase and the proenzyme of the ICE-like protease Nedd-2. Activation of these proteases and apoptosis were suppressed by the cytokine interleukin 6 or by a combination of the cytokine interferon γ and the antioxidant butylated hydroxyanisole, and activation of poly(ADP-ribose) polymerase and apoptosis were suppressed by some protease inhibitors. In a clone of M1 cells that did not express p53, vincristine or doxorubicin induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by interleukin 6. In another myeloid leukemia (7-M12) doxorubicin also induced protease activation and apoptosis that were not suppressed by protease inhibitors, but were suppressed by granulocyte–macrophage colony-stimulating factor. The results indicate that (i) overexpression of wild-type p53 by itself or treatment with cytotoxic compounds in wild-type p53-expressing or p53-nonexpressing myeloid leukemic cells is associated with activation of ICE-like proteases; (ii) cytokines exert apoptosis-suppressing functions upstream of protease activation; (iii) the cytotoxic compounds induce additional pathways in apoptosis; and (iv) cytokines can also suppress these other components of the apoptotic machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin. The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases. The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors. Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor. These data strongly suggest that AlbD is an albicidin hydrolase. The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35°C. Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane. The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 ± 22% when the treatment is started 12 h before ischemia and by 63 ± 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1β-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E2 production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the early events in physiological shock is the generation of activators for leukocytes, endothelial cells, and other cells in the cardiovascular system. The mechanism by which these activators are produced has remained unresolved. We examine here the hypothesis that pancreatic digestive enzymes in the ischemic intestine may be involved in the generation of activators during intestinal ischemia. The lumen of the small intestine of rats was continuously perfused with saline containing a broadly acting pancreatic enzyme inhibitor (6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate, 0.37 mM) before and during ischemia of the small intestine by splanchnic artery occlusion. This procedure inhibited activation of circulating leukocytes during occlusion and reperfusion. It also prevented the appearance of activators in portal venous and systemic artery plasma and attenuated initiating symptoms of multiple organ injury in shock. Intestinal tissue produces only low levels of activators in the absence of pancreatic enzymes, whereas in the presence of enzymes, activators are produced in a concentration- and time-dependent fashion. The results indicate that pancreatic digestive enzymes in the ischemic intestine serve as an important source for cell activation and inflammation, as well as multiple organ failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation plays a critical role in atherogenesis, yet the mediators linking inflammation to specific atherogenic processes remain to be elucidated. One such mediator may be secretory sphingomyelinase (S-SMase), a product of the acid sphingomyelinase gene. The secretion of S-SMase by cultured endothelial cells is induced by inflammatory cytokines, and in vivo data have implicated S-SMase in subendothelial lipoprotein aggregation, macrophage foam cell formation, and possibly other atherogenic processes. Thus, the goal of this study was to seek evidence for S-SMase regulation in vivo during a physiologically relevant inflammatory response. First, wild-type mice were injected with saline or lipopolysaccharide (LPS) as a model of acute systemic inflammation. Serum S-SMase activity 3 h postinjection was increased 2- to 2.5-fold by LPS (P < 0.01). To determine the role of IL-1 in the LPS response, we used IL-1 converting enzyme knockout mice, which exhibit deficient IL-1 bioactivity. The level of serum S-SMase activity in LPS-injected IL-1 converting enzyme knockout mice was ≈35% less than that in identically treated wild-type mice (P < 0.01). In LPS-injected IL-1-receptor antagonist knockout mice, which have an enhanced response to IL-1, serum S-SMase activity was increased 1.8-fold compared with LPS-injected wild-type mice (P < 0.01). Finally, when wild-type mice were injected directly with IL-1β, tumor necrosis factor α, or both, serum S-SMase activity increased 1.6-, 2.3-, and 2.9-fold, respectively (P < 0.01). These data show regulation of S-SMase activity in vivo and they raise the possibility that local stimulation of S-SMase may contribute to the effects of inflammatory cytokines in atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism by which mutations in the superoxide dismutase (SOD1) gene cause motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS) is unknown. Recent reports that neuronal death in SOD1-familial ALS is apoptotic have not documented activation of cell death genes. We present evidence that the enzyme caspase-1 is activated in neurons expressing mutant SOD1 protein. Proteolytic processing characteristic of caspase-1 activation is seen both in spinal cords of transgenic ALS mice and neurally differentiated neuroblastoma (line N2a) cells with SOD1 mutations. This activation of caspase-1 is enhanced by oxidative challenge (xanthine/xanthine oxidase), which triggers cleavage and secretion of the interleukin 1β converting enzyme substrate, pro-interleukin 1β, and induces apoptosis. This N2a culture system should be an instructive in vitro model for further investigation of the proapoptotic properties of mutant SOD1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemic stroke is the most common life-threatening neurological disease and has limited therapeutic options. One component of ischemic neuronal death is inflammation. Here we show that doxycycline and minocycline, which are broad-spectrum antibiotics and have antiinflammatory effects independent of their antimicrobial activity, protect hippocampal neurons against global ischemia in gerbils. Minocycline increased the survival of CA1 pyramidal neurons from 10.5% to 77% when the treatment was started 12 h before ischemia and to 71% when the treatment was started 30 min after ischemia. The survival with corresponding pre- and posttreatment with doxycycline was 57% and 47%, respectively. Minocycline prevented completely the ischemia-induced activation of microglia and the appearance of NADPH-diaphorase reactive cells, but did not affect induction of glial acidic fibrillary protein, a marker of astrogliosis. Minocycline treatment for 4 days resulted in a 70% reduction in mRNA induction of interleukin-1β-converting enzyme, a caspase that is induced in microglia after ischemia. Likewise, expression of inducible nitric oxide synthase mRNA was attenuated by 30% in minocycline-treated animals. Our results suggest that lipid-soluble tetracyclines, doxycycline and minocycline, inhibit inflammation and are neuroprotective against ischemic stroke, even when administered after the insult. Tetracycline derivatives may have a potential use also as antiischemic compounds in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(+)-Hydantocidin, a recently discovered natural spironucleoside with potent herbicidal activity, is shown to be a proherbicide that, after phosphorylation at the 5' position, inhibits adenylosuccinate synthetase, an enzyme involved in de novo purine synthesis. The mode of binding of hydantocidin 5'-monophosphate to the target enzyme was analyzed by determining the crystal structure of the enzyme-inhibitor complex at 2.6-A resolution. It was found that adenylosuccinate synthetase binds the phosphorylated compound in the same fashion as it does adenosine 5'-monophosphate, the natural feedback regulator of this enzyme. This work provides the first crystal structure of a herbicide-target complex reported to date.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have purified from hamster liver a second cysteine protease that cleaves and activates sterol regulatory element binding proteins (SREBPs). cDNA cloning revealed that this enzyme is the hamster equivalent of Mch3, a human enzyme that is related to the interleukin 1beta converting enzyme. We call this enzyme Mch3/SCA-2. It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. This cleavage liberates an NH2-terminal fragment of approximately 460 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. Mch3/SCA-2 and CPP32/SCA-I are synthesized as inactive 30-35 kDa precursors that are thought to be cleaved during apoptosis to generate active fragments of approximately 20 and approximately 10 kDa. The current data lend further support to the notion that SREBPs are cleaved and activated as part of the program in programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baculovirus inhibitors of apoptosis (IAPs) act in insect cells to prevent cell death. Here we describe three mammalian homologs of IAP, MIHA, MIHB, and MIHC, and a Drosophila IAP homolog, DIHA. Each protein bears three baculovirus IAP repeats and an N-terminal ring finger motif. Apoptosis mediated by interleukin 1beta converting enzyme (ICE), which can be inhibited by Orgyia pseudotsugata nuclear polyhedrosis virus IAP (OpIAP) and cowpox virus crmA, was also inhibited by MIHA and MIHB. As MIHB and MIHC were able to bind to the tumor necrosis factor receptor-associated factors TRAF1 and TRAF2 in yeast two-hybrid assays, these results suggest that IAP proteins that inhibit apoptosis may do so by regulating signals required for activation of ICE-like proteases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine protease granzyme B, which is secreted by cytotoxic cells, is one of the major effectors of apoptosis in susceptible targets. To examine the apoptotic mechanism of granzyme B, we have analyzed its effect on purified proteins that are thought to be components of death pathways inherent to cells. We demonstrate that granzyme B processes interleukin 1beta-converting enzyme (ICE) and the ICE-related protease Yama (also known as CPP32 or apopain) by limited proteolysis. Processing of ICE does not lead to activation. However, processing by granzyme B leads directly to the activation of Yama, which is now able to bind inhibitors and cleave the substrate poly(ADP-ribose) polymerase whose proteolysis is a marker of apoptosis initiated by several other stimuli. Thus ICE-related proteases can be activated by serine proteases that possess the correct specificity. Activation of pro-Yama by granzyme B is within the physiologic range. Thus the cytotoxic effect of granzyme B can be explained by its activation of an endogenous protease component of a programmed cell death pathway.