863 resultados para amplificatore lock-in labview strumento misura segnali rumore energy gap
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesnt improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a singular experimental orchard named Asymmetric orchard, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. Asymmetric training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 1200 molm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal pH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
High spectral resolution radiative transfer (RT) codes are essential tools in the study of the radiative energy transfer in the Earth atmosphere and a support for the development of parameterizations for fast RT codes used in climate and weather prediction models. Cirrus clouds cover permanently 30% of the Earth's surface, representing an important contribution to the Earth-atmosphere radiation balance. The work has been focussed on the development of the RT model LBLMS. The model, widely tested in the infra-red spectral range, has been extended to the short wave spectrum and it has been used in comparison with airborne and satellite measurements to study the optical properties of cirrus clouds. A new database of single scattering properties has been developed for mid latitude cirrus clouds. Ice clouds are treated as a mixture of ice crystals with various habits. The optical properties of the mixture are tested in comparison to radiometric measurements in selected case studies. Finally, a parameterization of the mixture for application to weather prediction and global circulation models has been developed. The bulk optical properties of ice crystals are parameterized as functions of the effective dimension of measured particle size distributions that are representative of mid latitude cirrus clouds. Tests with the Limited Area Weather Prediction model COSMO have shown the impact of the new parameterization with respect to cirrus cloud optical properties based on ice spheres.
Resumo:
Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.
Resumo:
La tesi tratta del progetto e della realizzazione di un riferimento in tensione simmetrico e stabile in temperatura, realizzato in tecnologia CMOS. Nella progettazione analogica ad alta precisione ha assunto sempre pi importanza il problema della realizzazione di riferimenti in tensione stabili in temperatura. Nella maggior parte dei casi vengono presentati Bandgap, ovvero riferimenti in tensione che sfruttano l'andamento in temperatura dell'energy gap del silicio al fine di ottenere una tensione costante in un ampio range di temperatura. Tale architettura risulta utile nei sistemi ad alimentazione singola compresa fra 0 e Vdd essendo in grado di generare una singola tensione di riferimento del valore tipico di 1.2V. Nella tesi viene presentato un riferimento in tensione in grado di offrire le stesse prestazioni di un Bandgap per quanto riguarda la variazione in temperatura ma in grado di lavorare sia in sistemi ad alimentazione singola che ad alimentazione duale. Il circuito proposto e' in grado di generare due tensioni, simmetriche rispetto a un riferimento dato, del valore nominale di 450mV. All'interno della tesi viene descritto il progetto di due diverse architetture, entrambe in grado di generare le tensioni con le specifiche richieste. Le due architetture sono poi state confrontate analizzando in particolare la stabilit in temperatura, la potenza dissipata, il PSRR (Power Supply Rejection Ratio) e la simmetria delle tensioni generate. Al termine dell'analisi stato poi implementato su silicio il circuito che garantiva le prestazioni migliori. In sede di disegno del layout su silicio sono stati affrontati i problemi derivanti dall'adattamento dei componenti al fine di ottenere una maggiore insensibilit del circuito stesso alle incertezze legate al processo di realizzazione. Infine sono state effettuate le misurazioni attraverso una probe station a 4 sonde per verificare il corretto funzionamento del circuito e le sue prestazioni.
Resumo:
Im Rahmen der Arbeit wurde ein neuartiges Aerosol-Ionenfallen-Massenspektrometer (AIMS) aufgebaut und umfassend charakterisiert. Mit dem AIMS kann die chemische Zusammensetzung der verdampfbaren Komponente (bei etwa 600 C) von Aerosolpartikeln quantitativ und on-line bestimmt werden. Die Durchmesser der Teilchen, die analysiert werden knnen, liegen zwischen etwa 30 und 500 nm. Der experimentelle Aufbau greift auf ein bereits gut charakterisiertes Einlasssystem des Aerodyne Aerosol-Massenspektrometers (AMS) zurck, das einen Partikeleinlass, bestehend aus einer kritischen Dse und einer aerodynamischen Linse, einen Verdampfer fr die Aerosolteilchen und eine Elektronensto-Ionenquelle enthlt. Das kommerzielle AMS verwendet entweder ein lineares Quadrupol-Massenfilter (Q-AMS) oder ein Flugzeit-Massenspektrometer (ToF-AMS). Im AIMS hingegen wird eine dreidimensionale Ionenfalle als Massenanalysator eingesetzt. Dadurch erffnen sich unter anderem Mglichkeiten zur Durchfhrung von MSn-Studien und Ionen/Molekl-Reaktionsstudien. Das Massenspektrometer und wichtige Teile der Steuerungselektronik wurden am Max-Planck-Institut fr Chemie in Mainz entworfen und hergestellt. Das AIMS wird von einem PC und einer Software, die in der Programmiersprache LabVIEW verfasst ist, gesteuert. Aufgrund seiner Kompaktheit ist das Instrument auch fr den Feldeinsatz geeignet. Mit der Software Simion 7.0 wurden umfangreiche Simulationsstudien durchgefhrt. Diese Studien beinhalten Simulationen zur Ermittlung der optimalen Spannungseinstellungen fr den Ionentransfer von der Ionenquelle in die Ionenfalle und eine Abschtzung der Sammeleffizienz der Ionenfalle, die gut mit einem gemessenen Wert bereinstimmt. Charakterisierungsstudien zeigen einige instrumentelle Merkmale des AIMS auf. Es wurde beispielsweise ein Massenauflsungsvermgen von 807 fr m/z 121 gefunden, wenn eine Analyserate von 1780 amu/s verwendet wird. Wird die Analyserate verringert, dann lsst sich das Massenauflsungsvermgen noch erheblich steigern. Bei m/z 43 kann dann ein Wert von > 1500 erzielt werden, wodurch sich Ionenfragmente wie C2H3O+ (m/z 43.0184) und C3H7+ (m/z 43.0548) voneinander trennen lassen. Der Massenbereich des AIMS lsst sich durch resonante Anregung erweitern; dies wurde bis zu einer Masse von 1000 amu getestet. Kalibrationsmessungen mit laborgenerierten Partikeln zeigen eine hervorragende Linearitt zwischen gemessenen Signalstrken und erzeugten Aerosol-Massenkonzentrationen. Diese Studien belegen im Zusammenhang mit den gefundenen Nachweisgrenzen von Nitrat (0.16 g/m) und Sulfat (0.65 g/m) aus Aerosolpartikeln, dass das AIMS fr quantitative Messungen von atmosphrischem Aerosol geeignet ist. Ein Vergleich zwischen dem AIMS und dem Q-AMS fr Nitrat in stdtischem Aerosol zeigt eine gute bereinstimmung der gefundenen Messwerte. Fr laborgenerierte Polystyren-Latexpartikel wurde eine MS/MS-Studie unter der Anwendung von collision induced dissociation (CID) durchgefhrt. Das Verhltnis von Fragmentionen zu Analytionen wurde zu einem Wert von > 60% bestimmt. In der Zukunft knnen hnliche MS/MS-Studien auch fr atmosphrische Aerosolpartikel angewandt werden, wodurch sich neue Perspektiven fr die Speziation von Aerosolbestandteilen erffnen. Dann sollen vor allem Kondensationsprozesse, das heit die Bildung von sekundrem Aerosol, detailliert untersucht werden.
Resumo:
A novel design based on electric field-free open microwell arrays for the automated continuous-flow sorting of single or small clusters of cells is presented. The main feature of the proposed device is the parallel analysis of cell-cell and cell-particle interactions in each microwell of the array. High throughput sample recovery with a fast and separate transfer from the microsites to standard microtiter plates is also possible thanks to the flexible printed circuit board technology which permits to produce cost effective large area arrays featuring geometries compatible with laboratory equipment. The particle isolation is performed via negative dielectrophoretic forces which convey the particles into the microwells. Particles such as cells and beads flow in electrically active microchannels on whose substrate the electrodes are patterned. The introduction of particles within the microwells is automatically performed by generating the required feedback signal by a microscope-based optical counting and detection routine. In order to isolate a controlled number of particles we created two particular configurations of the electric field within the structure. The first one permits their isolation whereas the second one creates a net force which repels the particles from the microwell entrance. To increase the parallelism at which the cell-isolation function is implemented, a new technique based on coplanar electrodes to detect particle presence was implemented. A lock-in amplifying scheme was used to monitor the impedance of the channel perturbed by flowing particles in high-conductivity suspension mediums. The impedance measurement module was also combined with the dielectrophoretic focusing stage situated upstream of the measurement stage, to limit the measured signal amplitude dispersion due to the particles position variation within the microchannel. In conclusion, the designed system complies with the initial specifications making it suitable for cellomics and biotechnology applications.
Resumo:
Questa tesi di dottorato tratta il tema delle Tecnologie Appropriate e delle Buone Pratiche per la gestione delle risorse idriche ed il risparmio energetico nellambito dellabitato urbano e rurale. Viene fatta una breve panoramica sulle principali teorie e metodologie che fino ad oggi hanno fatto da linee guida per la progettazione sostenibile e il corretto utilizzo delle risorse. Questa visione d'insieme servir per esprimere delle valutazioni e trovare dei comuni dominatori per proporre una nuova metodologia d'approccio alla gestione delle risorse con particolare attenzione rivolta alla condizione presente e alla zona dintervento. Site specific sustainability Approach (S3A). I casi studio: Un progetto di approvvigionamento idrico e di desalinizzazione delle acque per unoasi del Sahara marocchino. Un progetto di ricerca della Columbia University e della NASA legato alla sostenibilit urbana di New York che analizza i benefici apportati dall'installazione di coperture verdi nell'area di Manhattan da un punto di vista della gestione delle risorse idriche, energetiche e delle componenti ambientali. Un progetto di verde verticale e giardino pensile a Milano. Un progetto di approvvigionamento idrico sostenibile e gestione del verde per la citt di Porto Plata in Repubblica Domenicana. Approfondimenti e sperimentazioni. E stato approfondito il tema della distillazione solare per la dissalazione e potabilizzazione delle acque in zone rurali desertiche ed isolate. E stato progettato e realizzato un prototipo innovativo di distillatore tubolare con collettore solare parabolico. Il prototipo stato testato nei laboratori della Columbia University di New York. Sono state approfondite le Khettaras o Qanat, tunnel sotterranei per lapprovvigionamento idrico nelle zone aride. Infine sono stati approfonditi i benefici apportati dalle coperture a verde (tetti verdi) e dal verde verticale nelle zone urbane dal punto di vista della gestione delle risorse idriche ed il risparmio energetico.
Resumo:
III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.
Resumo:
Una delle tecnologie radio che negli ultimi anni ha subito il maggior sviluppo quella dellidentificazione a radio frequenza (Radio Frequency Identification), utilizzata in un gran numero di ambiti quali la logistica, il tracciamento, lautenticazione e i pagamenti elettronici. Tra le tecnologie specifiche legate allRFID si ritrova la Near Field Communication (NFC). Questa una tecnologia di trasmissione dati a corto raggio che rappresenta unevoluzione dellRFID. Una delle caratteristiche dellNFC quella di instaurare una comunicazione tra due dispositivi in maniera semplice e intuitiva. Loggetto che instaura la comunicazione il Reader, nellambito RFID un dispositivo altamente specializzato, poich pu lavorare a diverse frequenze operative. Lelemento innovativo che ha consentito il successo dellNFC il fatto che questa tecnologia possa integrare il Reader in uno strumento di comunicazione di largo uso, ovvero lo smartphone. Questo permette di inizializzare lo scambio dati, sia esso di lettura di un circuito integrato passivo o una trasmissione peer-to-peer, a seguito del naturale gesto di avvicinare lo smartphone. Analisti ed esperti del settore sono convinti del successo dellNFC, nonostante siano state smentite le attese che vedevano lNFC integrato in oltre la met dei cellulari entro il 2010. Tra le molteplici applicazioni NFC in questo elaborato ci si soffermer in particolare sul cosiddetto Smart Poster. Questo utilizzo pu essere molto efficace avendo una gamma di impiego molto vasta. Per limmagazzinamento dei dati nei Tag o nelle Smart Card si utilizzato un protocollo dincapsulamento dati chiamato NDEF (NFC Data Exchange Format) trattato nel capitolo 3 di questa trattazione. Nella seconda parte dellelaborato si realizzata una sperimentazione per misurare le distanze di funzionamento di cellulari e Reader per PC. In questo ambito si realizzato quello che si definito lo Smart Brick, cio un mattone che comunica con dispositivi NFC grazie allinstallazione di un Tag al suo interno. Si parler della realizzazione e degli strumenti software/hardware che hanno permesso di realizzare e programmare questo mattone elettronico.
Resumo:
The promising development in the routine nanofabrication and the increasing knowledge of the working principles of new classes of highly sensitive, label-free and possibly cost-effective bio-nanosensors for the detection of molecules in liquid environment, has rapidly increased the possibility to develop portable sensor devices that could have a great impact on many application fields, such as health-care, environment and food production, thanks to the intrinsic ability of these biosensors to detect, monitor and study events at the nanoscale. Moreover, there is a growing demand for low-cost, compact readout structures able to perform accurate preliminary tests on biosensors and/or to perform routine tests with respect to experimental conditions avoiding skilled personnel and bulky laboratory instruments. This thesis focuses on analysing, designing and testing novel implementation of bio-nanosensors in layered hybrid systems where microfluidic devices and microelectronic systems are fused in compact printed circuit board (PCB) technology. In particular the manuscript presents hybrid systems in two validating cases using nanopore and nanowire technology, demonstrating new features not covered by state of the art technologies and based on the use of two custom integrated circuits (ICs). As far as the nanopores interface system is concerned, an automatic setup has been developed for the concurrent formation of bilayer lipid membranes combined with a custom parallel readout electronic system creating a complete portable platform for nanopores or ion channels studies. On the other hand, referring to the nanowire readout hybrid interface, two systems enabling to perform parallel, real-time, complex impedance measurements based on lock-in technique, as well as impedance spectroscopy measurements have been developed. This feature enable to experimentally investigate the possibility to enrich informations on the bio-nanosensors concurrently acquiring impedance magnitude and phase thus investigating capacitive contributions of bioanalytical interactions on biosensor surface.
Resumo:
Enhancing the sensitivity of nuclear magnetic resonance measurements via hyperpolarization techniques like parahydrogen induced polarization (PHIP) is of high interest for spectroscopic investigations. Parahydrogen induced polarization is a chemical method, which makes use of the correlation between nuclear spins in parahydrogen to create hyperpolarized molecules. The key feature of this technique is the pairwise and simultaneous transfer of the two hydrogen atoms of parahydrogen to a double or triple bond resulting in a population of the Zeeman energy levels different from the Boltzmann equation. The obtained hyperpolarization results in antiphase peaks in the NMR spectrum with high intensities. Due to these strong NMR signals, this method finds arnlot of applications in chemistry e.g. the characterization of short-lived reaction intermediates. Also in medicine it opens up the possibility to boost the sensitivity of medical diagnostics via magnetic labeling of active contrast agents. Thus, further examination and optimization of the PHIP technique is of significant importance in order to achieve the highest possible sensitivity gain.rnrnIn this work, different aspects concerning PHIP were studied with respect to its chemical and spectroscopic background. The first part of this work mainly focused on optimizing the PHIP technique by investigating different catalyst systems and developing new setups for the parahydrogenation. Further examinations facilitated the transfer of the generated polarization from the protons to heteronuclei like 13C. The second part of this thesis examined the possibility to transfer these results to different biologically active compounds to enable their later application in medical diagnostics. Onerngroup of interesting substances is represented by metabolites or neurotransmitters in mammalian cells. Other interesting substances are clinically relevant drugs like a barbituric acid derivative or antidepressant drugs like citalopram which were investigated with regard to their applicability for the PHIP technique and the possibility to achievernpolarization transfer to 13C nuclei. The last investigated substrate is a polymerizable monomer whose polymer was used as a blood plasma expander for trauma victims after the first half of the 20th century. In this case, the utility of the monomer for the PHIP technique as a basis for later investigations of a polymerization reaction using hyperpolarized monomers was examined.rnrnHence, this thesis covers the optimization of the PHIP technology, hereby combining different fields of research like chemical and spectroscopical aspects, and transfers the results to applications of real biologally acitve compounds.
Resumo:
Die zwischen allen Objekten vorhandenen Wechselwirkungen knnen repulsiver und attraktiver Natur sein. Bei den attraktiven Krften kommt der Bestimmung von Dispersionskrften eine besondere Bedeutung zu, da sie in allen kolloidalen Systemen vorhanden sind und entscheidenden Einfluss auf die Eigenschaften und Prozesse dieser Systeme nehmen. Eine der Mglichkeiten, Theorie und Experiment zu verbinden, ist die Beschreibung der London-Van der Waals-Wechselwirkung durch die Hamaker-Konstante, welche durch Berechnungen der Wechselwirkungsenergie zwischen Objekten erhalten werden kann. Fr die Beschreibung von Oberflchenphnomenen wie Adhsion, die in Termen der totalen potentiellen Energie zwischen Partikeln und Substrat beschrieben werden, bentigt man exakt bestimmte Hamaker-Konstanten. In der vorliegenden Arbeit wurde die asymmetrische Fluss Feld-Fluss Fraktionierung in Kombination mit einem auf dem Newton-Algorithmus basierenden Iterationsverfahren zur Bestimmung der effektiven Hamaker-Konstanten verschiedener Nanopartikeln sowie Polystyrollatex-Partikel in Toluol bzw. Wasser verwendet. Der Einfluss verschiedener Systemparameter und Partikeleigenschaften wurde im Rahmen der klassischen DLVO-Theorie untersucht.
Resumo:
Descrizione di un software di simulazione, realizzato attraverso la programmazione in Labview, che estrapola i dati immagazzinati nei file RINEX di navigazione e di osservazione della missione GRACE e li invia con le stesse modalit con cui lo farebbe il ricevitore OEM615 della NovAtel. L'obiettivo creare un software che permetta di testare, nell'ambito della missione ESEO dell'ESA, il ricevitore GPS che far parte del payoload della stessa missione, costituita da un micro-satellite che orbiter in orbita bassa LEO, e che sar composto da un ricevitore OEM615, da un'antenna GPS e da un processore di navigazione.
Resumo:
During recent decades, economists' interest in gender-related issues has risen. Researchers aim to show how economic theory can be applied to gender related topics such as peer effect, labor market outcomes, and education. This dissertation aims to contribute to our understandings of the interaction, inequality and sources of differences across genders, and it consists of three empirical papers in the research area of gender economics. The aim of the first paper ("Separating gender composition effect from peer effects in education") is to demonstrate the importance of considering endogenous peer effects in order to identify gender composition effect. This fact is analytically illustrated by employing Manski's (1993) linear-in-means model. The paper derives an innovative solution to the simultaneous identification of endogenous and exogenous peer effects: gender composition effect of interest is estimated from auxiliary reduced-form estimates after identifying the endogenous peer effect by using Graham (2008) variance restriction method. The paper applies this methodology to two different data sets from American and Italian schools. The motivation of the second paper ("Gender differences in vulnerability to an economic crisis") is to analyze the different effect of recent economic crisis on the labor market outcome of men and women. Using triple differences method (before-after crisis, harder-milder hit sectors, men-women) the paper used British data at the occupation level and shows that men suffer more than women in terms of probability of losing their job. Several explanations for the findings are proposed. The third paper ("Gender gap in educational outcome") is concerned with a controversial academic debate on the existence, degree and origin of the gender gap in test scores. The existence of a gap both in mean scores and the variability around the mean is documented and analyzed. The origins of the gap are investigated by looking at wide range of possible explanations.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.