821 resultados para alumínio
Resumo:
Apoptosis is a form of programmed cell death selectively removes abnormal cells, and thus contributes to maintaining the balance of the dynamics of cell reproduction. Therefore the verification of the occurrence of apoptotic cell death after a pathological stimulus is crucial for the analysis of the maintenance of normal cell cycle of a given tissue or organ. In this experiment were used cells lines human mammary tumor MDAMB231, T47, MCF7, which were irradiated with X-rays at a dose of 5 Gy in a time interval of 15 seconds, and filtration of 1mm aluminum. Samples containing the cells were grown in a specific culture medium, containing fetal bovine serum and growth factor, and two samples were prepared with each of the cell lines, one to be irradiated, and another that has not been irradiated, which denoted by negative control of the irradiation. The primary goal of the experiment was to verify and compare the rates of apoptosis in each cell lines, in which were irradiated and that were not irradiated, using flow cytometry as a method for detecting apoptotic cell death in together with specific markers annexin V and propidium iodide. Data from the readings made by flow cytometry were analyzed and interpreted using the software WinMDI statistical graph. By comparing the indices relating to the readings of positive and negative for specific markers of apoptosis, based on differences in the statistical data presented lectures regarding the cellular irradiated and not irradiated, collude cells in question once... (Complete abstract click electronic access below)
Resumo:
Alloy Al-7%Si-0,3Mg (AA356), having an excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability, high wear resistance, high strength to weight particularly in the automotive and aerospace engineering. The refinement of the structure aluminum silicon eutectic alloy is a fairly common practice in the casting, through the treatment knows as modification. You can get the modification for the addition of chemicals and rare earths, these have the ability to modify the structure of the eutectic, but only sodium and strontium produce a strong action modifier when used in low concentrations. The modifying effect of silicon grain turns into a fibrous form branched and enveloped by the metal matrix in the form of a composite structure that has the highest limit of tensile strength, ductility and machinability. This work will be obtained AA356 alloy ingots using two different types of molds: metal mold and sand mold. Macrographs will be made in ingots obtained for observation of the macrostructures obtained in both types of ingots. Will be sampled at strategic locations of the ingots to correlate microstructure and cooling rate. The results showed that the material of the ingot has a strong influence on the resulting micro-andmacrostructure
Resumo:
For engineering projects that require high reliability levels, is often not enough know only physical and chemical material properties. It’s necessary understand the failure mode of these materials in operation to ensure security level in the project and establish more stringent criteria in the analysis of structural integrity. Due to this need, aircraft industry has been using aluminum alloys in their designs and projects. “Currently more than 70% of aircraft structures are built of high strength aluminum alloys among which stand out 7075-T6 and 2024-T3 alloys, which are considered basics for being used in the new alloys development.” (PASTOUKHOV & VOORWALD, 1995). Some years ago ALCOA develops Al 2524 alloy that has emerged as refinement of Al 2024 (Al, Cu. Mg) alloy, with purpose of improve fracture toughness and fatigue resistance on structural components. The present research addresses testing of fatigue crack propagation under variable amplitude loading for Al 2024 alloy, observing the interaction effects from application of overhead blocks and plastic zone at the crack tip and makes an analysis of fracture surface images
Resumo:
The approach of the subject matter in this work relies on the fact that the reliability of methods for performance analysis of materials proves critical for the result. This work focused on the development and presentation of the methodology for lifting probability curves for fatigue test (SN) according to standard E739, this focus is justified by the fact that the results in fatigue test show considerable dispersion making it difficult to reading and interpretation of data, this dispersion arises because the phenomenon of rupture is strongly influenced by internal characteristics of the material, we can then have much data ranging from test to test. Thus we set out originally for a brief study of aluminum alloys in question, as well as the treatments to which they were subjected. We also studied the behavior of materials when subjected to cyclic loading, which configures process of fatigue failure, and even fatigue test method in question. This statistical analysis is based on the ASTM E739 standard, so its contents was studied in detail so that we could present in detail the methodology and raise SN curves for different aluminum alloy 7012 subjected to fatigue test. Data were collected from tests conducted in the department of materials from two samples of aluminum alloy 7012 solubilized and precipitated by different time intervals and assayed temperature fatigue-type traction-compression, these data were then analyzed and used to survey curves using the base as E739. After lifting the curve analyzed the characteristics of the test samples and their correlation with the test results. We confirmed the effectiveness of the method of statistical analysis by ASME E739, which allowed the reading of data without this method would be very difficult to have a reading and comparison of the results for the two types... (Complete abstract click electronic access below)
Resumo:
The increasing technological innovation and demand for materials with better properties boosts research into new materials and new alloys. To do so, aluminum alloys are being developed, among them the AA7075-T6, having many applications in aerospace and military industries, machinery and equipment, molds for plastic injection and structures. To study and understand the properties, characteristics and especially the microstructure of the material, the metallographic preparation is essential. This paper presents new methodologies to achieve the metallography of samples of scrap alloy AA7075-T6, with emphasis on methods of polishing. For the five samples, the best results were those with specific grinding, the samples only going down on the sander. For polishing, the most effective method so far has been using the polishing cloth 16.3, of ATM enterprise, solution of diamond 3 μm, solution of diamond 1 μm, and colloidal solution of OP-S. For the etching, the reactive agent used was phosphoric acid (H3PO4) 85% P.A., as 90% in the proportion of distilled water to 10% acid. The best results were obtained in the attacks of 300 and 240 seconds, revealing the grain boundaries in most areas. Methodologies need more studies and more tests, but the results have proved to be satisfactory
Resumo:
O sucesso de uma espécie em um hábitat é dependente de seu desempenho ecofisiológico, que pode ser definido com variáveis de crescimento, que, por sua vez, pode relacionar-se aos recursos naturais disponíveis. Um dos fatores determinantes da ocorrência de espécies é o fator edáfico. A baixa fertilidade do solo das fisionomias do Cerrado são semelhantes, mostrando altos teores de alumínio (Al3+) e baixo pH. Contudo, solos de matas de brejo, onde Styrax pohlii é freqüente, apresentam teores levemente maiores de matéria orgânica. Logo, é possível que esta maior fertilidade do solo possa influenciar o crescimento de S. pohlii, podendo explicar sua maior ocorrência nestes hábitats. Objetivou-se medir a biomassa de órgãos, área foliar, número de folhas, área foliar específica, razão de massa de folhas e a razão de área foliar de plantas de S. pohlii, submetidas a diferentes cargas de nutrientes em cultivo hidropônico. Testou-se a hipótese de que diferentes cargas de nutrientes (100%, 50%, 25%, 10% e 1% da concentração total de uma solução nutritiva) alteram as variáveis de crescimento da espécie. As plantas foram cultivadas em caixas plásticas (20 L), contendo as diferentes cargas de nutrientes, em solução nutritiva com alumínio (Al3+) e pH 4,0. Utilizaram-se 20 parcelas (caixas plásticas) com cinco repetições (plantas) por parcela, perfazendo um total de 100 plantas. Realizaram-se quatro coletas (a cada 30 dias), onde as variáveis foram medidas. Os resultados mostraram que a espécie não respondeu a incrementos de nutrientes na solução nutritiva, podendo ela ser considerada não plástica a fatores edáficos. Considerando a grande ocorrência de indivíduos de S. pohlii em matas ripárias, ciliares e de brejo, os resultados sugerem que a fertilidade levemente maior nesses ambientes, dada pela elevação da matéria orgânica, não explica totalmente sua maior ocorrência nessas vegetações
Resumo:
The Sanding is a complex process involving many variables that affect the quality of the part produced, working mainly in the timber industry in the production of panels (MDF, MDP, HDF, etc...) and furniture. However, these industries use the sanding process empirically, not optimizing it. The aim of this study was to compare the behavior of sandpaper white aluminum oxide (OA-white) and Black silicon carbide (SiC-black), analyzing variables in the process as: strength, power, emission, vibration, wear particle size of sanding, and its consequences on the surface finish of the workpiece. Made the process of plane grinding samples of Pinus elliottii, processed in parallel to the fibers, which were sanded with sandpaper grain OA white and black 3-SiC abrasive conditions (new, moderately eroded and severely eroded) grain sizes in 3 (80, 100, and 120 mesh). 6 replicates was performed for each condition tested. Each trial was captured output variables of the sanding process: strength, power, emission and vibration. With two stages totaling 108 trials. After the sanded samples, it has the same surface quality by raising the surface roughness Ra. Through experiment, it can be concluded that abrasives OA-white tended to have higher strength, power, emissions and less vibration in the sanding process, compared to the SiC-black. However, surface finish exhibited similar to the particle size of 80 to 100 mesh, worn abrasive conditions. However, the particle size of 120 mesh, obtained by the roughness of sandpaper OA-bank was higher compared to SiC-black to all conditions of sandpaper due to its toughness
Resumo:
The process of sanding wood is little known and industries use it in a practical way without having studied their best conditions before. There are few studies involving this type of machining. On this basis, this paper studied the effects of varying moisture content of the wood surface quality after the sanding process. It was used a sanding machine with flat horizontal cut parallel to the fibers, using: 02 different species (Pinus elliottii and Corymbia citriodora); 01 sanding abrasive (aluminum oxide) and 03 different particle size abrasives ( P80 , P100 and P120 ) . Initially, the pieces were acclimatized ( 2 ± 7% , 12% and 17% ± 2 ± 2 ) and subsequently passed by the sanding process, and therefore, the surface roughness was analyzed. For each condition, were performed 06 repetitions totaling 54 trials for each species. We analyzed the effects of wood moisture by capturing the power sanding, rougheness, acoustic emission and maximum temperature during the sanding process. The variation of moisture content produced changes in the surface quality of the finished parts, and these changes were more marked in Pinus than Corymbia. During the sanding process of the specimens with 7 % and 12 % humidity, there was a lower noise emission, power consumption and heating surface. When checking the roughness of these parts after this process, it was observed that the surface quality of them were superior in the parts sanded containing 17 % moisture
Resumo:
The volume of liquid effluent generated in cattle slaughterhouses is quite high and cannot be released untreated in water bodies due to its high pollution load of predominantly organic origin. To minimize the environmental impacts of its industrial wastewater and meet the local environmental legislation, abattoirs shall make the treatment of these effluents. The present work aims to develop the study of a reactor by sequential batch pilot scale, in order to optimize their performance in treating wastewater from a cattle slaughterhouse. The treatment system used was developed and installed in the Laboratory of Wastewater Treatment, in Faculty of Science and Technology UNESP, Presidente Prudente campus. The procedure used followed the operation of sequential batch reactors, in which all processes and treatment operations occurring sequentially in a single unit, by establishing specific operating cycles, which comprise the following separated phases: aerobic reaction, anoxic reaction, sedimentation and emptying. Aiming to improve the quality of treatment was planned the addition of coagulant Poly Aluminum Chloride (PAC) in the reactor, by determining their optimal dosage by Jar-test trials. Were prepared four steps with specific operating cycles: step one or acclimatization (10 hour of aeration, one hour and 30 minutes of sedimentation and 30 minutes for exchanging the effluent); step 2 (6 hours of aeration or aerobic phase, 4 hours and 45 minutes of stirring or anoxic phase and 1 hour and 15 minutes for sedimentation and exchange effluent); step 3 (2 hours and 30 minutes of aeration, 8 hours and 15 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange) and step 4 (2 hours of aeration, 8 hours and 45 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange)... (Complete abstract click electronic access below)
Resumo:
Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application
Resumo:
The AA356 alloy is an alloy widely used in the automotive industry and aerospace due to its excellent mechanical properties. Refining the structure of eutectic silicon aluminum alloys is a fairly common practice in the foundry through treatment known as modification. This can be achieved by modifying agent adding chemicals such as contained in groups I and IIa of the periodic table and rare earths (europium, céreioi, praseodymium, neodymium, etc.). Has the ability to modify the structure of the eutectic, but only sodium and strontium produce an action modifier strong when used in low concentrations. The modifying effect of the shafts turn silicon into a fibrous form and branched surrounded by metallic matrix in the form of a composite structure that has the highest limit of tensile strength, ductility and machinability. In this work will be obtained ingots with and without the modifier type Al-10% Sr, made in sand molds and are generated and analyzed cooling curves and also the study of the macrostructure and microstructure of the solidified material. It was found that by adding the Al-Sr made shorten the solidification time and lower the grain size
Resumo:
With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards
Resumo:
Are being released in the construction market in Brazil ventures called Super 6. These businesses sell the promise of delivery of the apartment in six months after the launch of the venture. To meet this deadline are being deployed the constructive method of concrete walls using aluminum shapes. This system basically consists of pouring slabs and walls once, i.e. building up the wall shapes and slab joints. On the walls are used cloth, with reinforcements in vain and corners of walls and on these screens are tied the electrical boxes and conduits. For each tower is used the so-called system of half way, i.e. the system so it is sufficient to mount the Middle deck. Using a concrete which can be deformed in the next day you can lift one deck every two days with ready electric and hydraulicsystem, without having to tow the wall doing only minor fixes in the imperfections after concrete. With this system won an incredible speed in the construction of the structure reducing in almost one-third the length of the work. This work aims to compare in terms of cost-benefit of masonry structural systems and this new concrete wall system called Super 6. For this comparison will be used as parameter values used for the achievement of the Enterprise Portal of Roses of constructor Tenda which is one of the first to use concrete wall system. This project basically consists of seven towers of six floors each and will be budgeted the cost of this project if it were held in structural masonry. From these data it will be possible to make a comparison about the actual beneficial to adopt this system
Resumo:
This present study aimed at developing a methodology for analyzing on the feasibility of a new supplier of raw materials, industrial of aluminum production technology Soederberg. This raw material is pitch, which will be used in the manufacture of anodes for the electrolytic pot. The supplier to be analyzed is the Chemcoal of Ukrainian origin. Thereby developing techniques for a complete analysis, targeting the physical and chemical properties of pitch, economic feasibility and potential impacts on the client, potroom where these impacts may affect the production of aluminum, skimming factor, bubble noise, plasticity top anode and the anode consumption. After planning the test that was conducted on two strategies to generate greater traceability of impacts, data were collected and then it was made a statistical treatment of the data using statistical tools to generate the minitab greater reliability of results
Resumo:
This work consists of the implementation of the steps Define, Measure , Analyze , Improve and Control ( DMAIC ) to develop a Six Sigma project in an industry the food industry. The objective was to demonstrate a potential for reducing the occurrence of crushed cans in potting milk powder industry in a White Belt project. The food industry accounts for about 9 % of Brazil's gross domestic product ( GDP ), generating thousands of jobs . Among the major sectors of the food industry is the manufacturing sector of milk , occupies approximately 10 % of the total turnover of the food industry . Brazil is considered today one of the eight largest producers of milk powder in the world. The milk powder is packed , mostly for aluminum cans that are lined internally with varnishes and other materials to protect the milk of metals from aluminum. When the cans are dented food protection is compromised and may lead ingestion causing dis-eases such as botulism. Aiming to solve the problem of dented cans methodology was used as a case study with a quantitative approach through the DMAIC method. Some quality tools used in each step of the project as brainstorming , cause and effect diagram , flowchart , ef-fort and impact matrix, 5W1H , among other Pareto diagram is presented . A survey about the disposal of cans in the company verifying a mean loss and, from this histor-ical , a goal loss was calculated was performed . With the target set we calculated the annual saving design . During application of DMAIC was found that the highest rate of loss occurred in transportation between the factory and the factory that fills cans milk . Several actions were taken to resolve problems that resulted in dented cans and the first two months of phase control it was found that the smaller losses calculated target resulting in a saving for the company. The short time of implementa-tion of the Improve phase did not allow a more detailed a ...