961 resultados para allura red ac


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baron von Richthofen (the Red Baron) arguably the most famous fighter pilot of all time painted his plane the vividest of red hues, making it visible and identifiable at great distance, showing an aggressive pronouncement of dominance to other pilots. Can colour affect aggression and performance and if so is it observable within team sports? This study explores the effect of red on sporting performances within a team sports arena, through empirical analysis of match results from the Australian Rugby League spanning a period of 30 years. Both the descriptive analysis and the multivariate analysis report a positive relationship. Nevertheless, more evidence is required to better understand whether teams in red do enjoy greater success controlling explicitly in a multivariate analysis for many factors that simultaneously affect performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose/Objective: The basis for poor outcomes in some patients post transfusion remains largely unknown. Despite leukodepletion, there is still evidence of immunomodulatory effects of transfusion that require further study. In addition, there is evidence that the age of blood components transfused significantly affects patient outcomes. Myeloid dendritic cell (DC) and monocyte immune function were studied utilising an in vitro whole blood model of transfusion. Materials and methods: Freshly collected (‘recipient’) whole blood was cultured with ABO compatible leukodepleted PRBC at 25% blood replacement-volume (6hrs). PRBC were assayed at [Day (D) 2, 14, 28and 42 (date-of expiry)]. In parallel, LPS or Zymosan (Zy) were added to mimic infection. Recipients were maintained for the duration of the time course (2 recipients, 4 PRBC units, n = 8).Recipient DC and monocyte intracellular cytokines and chemokines (IL-6, IL-10, IL-12,TNF-a, IL-1a, IL-8, IP-10, MIP-1a, MIP-1b, MCP-1) were measured using flow cytometry. Changes in immune response were calculated by comparison to a parallel no transfusion control (Wilcoxin matched pairs). Influence of storage age was calculated using ANOVA. Results: Significant suppression of DC and monocyte inflammatory responses were evident. DC and monocyte production of IL-1a was reduced following exposure to PRBC regardless of storage age (P < 0.05 at all time points). Storage independent PRBC mediated suppression of DC and monocyte IL-1a was also evident in cultures costimulated with Zy. In cultures co-stimulated with either LPS or Zy, significant suppression of DC and monocyte TNF-a and IL-6 was also evident. PRBC storage attenuated monocyte TNF-a production when co-cultured with LPS (P < 0.01 ANOVA). DC and monocyte production of MIP-1a was significantly reduced following exposure to PRBC (DC: P < 0.05 at D2, 28, 42; Monocyte P < 0.05 all time points). In cultures co-stimulated with LPS and zymosan, a similar suppression of MIP-1a production was also evident, and production of both DC and monocyte MIP-1b and IP-10 were also significantly reduced. Conclusions: The complexity of the transfusion context was reflected in the whole blood approach utilised. Significant suppression of these key DC and monocyte immune responses may contribute to patient outcomes, such as increased risk of infection and longer hospital stay, following blood transfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate responses to self-administered brief questions regarding consumption of vegetables and fruit by comparison with blood levels of serum carotenoids and red-cell folate. Design: A cross-sectional study in which participants reported their usual intake of fruit and vegetables in servings per day, and serum levels of five carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and lycopene) and red-cell folate were measured. Serum carotenoid levels were determined by high-performance liquid chromatography, and red-cell folate by an automated immunoassay system. Settings and subjects: Between October and December 2000, a sample of 1598 adults aged 25 years and over, from six randomly selected urban centres in Queensland, Australia, were examined as part of a national study conducted to determine the prevalence of diabetes and associated cardiovascular risk factors. Results: Statistically significant (P<0.01) associations with vegetable and fruit intake (categorised into groups: ≤1 serving, 2–3 servings and ≥4 servings per day) were observed for α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and red-cell folate. The mean level of these carotenoids and of red-cell folate increased with increasing frequency of reported servings of vegetables and fruit, both before and after adjusting for potential confounding factors. A significant association with lycopene was observed only for vegetable intake before adjusting for confounders. Conclusions: These data indicate that brief questions may be a simple and valuable tool for monitoring vegetable and fruit intake in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red Blood Cells (RBCs) exhibit different types of motions and different deformed shapes, when they move through capillaries. RBCs can travel through capillaries having smaller diameters than RBCs’ diameter, due to the capacity of high deformability of the viscoelastic RBC membrane. The motion and the steady state shape of the RBCs depend on many factors, such as the geometrical parameters of the microvessel through which blood flows, the RBC membrane bending stiffness and the flow velocity. In this study, the effect of the RBC’s membrane stiffness on the deformation of a single RBC in a stenosed capillary is comprehensively examined. Smoothed Particle Hydrodynamics (SPH) in combination with the two-dimensional spring network membrane model is used to investigate the motion and the deformation property of the RBC. The simulation results demonstrate that the membrane bending stiffness of the RBC has a significant impact on the RBCs’ deformability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles of carrot red leaf virus (CRLV; luteovirus group) purified from chervil (Anthriscus cerefolium) contain a single ssRNA species of mol. wt. about 1.8 x 106 and a major protein of mol. wt. about 25000. CRLV acts as a helper for aphid transmission of carrot mottle virus (CMotV; ungrouped) from mixedly infected plants. Virus preparations purified from such plants possess the infectivity of both viruses but contain particles indistinguishable from those of CRLV; some of the particles are therefore thought to consist of CMotV RNA packaged in CRLV coat protein. When RNA from such preparations was electrophoresed in agarose/polyacrylamide gels, CMotV infectivity was associated with an RNA band that migrated ahead of the CRLV RNA band and had an estimated mol. wt. of about 1.5 x 106, similar to that previously found for the infective ssRNA extracted directly from Nicotiana clevelandii leaves infected with CMotV alone. Preparations of dsRNA from CMotV-infected N. clevelandii leaves contained two species: one of mol. wt. about 3.2 x 106, presumably the replicative form of the infective ssRNA, and the other, mol. wt. about 0.9 x 106, of unknown origin and function. The infective agent in buffer extracts of CMotV-infected N. clevelandii was resistant to RNase (although the enzyme acted as a reversible inhibitor of infection at high concentrations) and is therefore not unprotected RNA. It may be protected within the approximately 52 nm enveloped structures previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particles of two isolates of subterranean clover red leaf virus were purified by a method in which infected plant tissue was digested with an industrial-grade cellulase, Celluclast® 2.0 L type X. The yields of virus particles using this enzyme were comparable with those obtained using either of two laboratory-grade cellulases, Cellulase type 1 (Sigma) and Driselase®. However, the specific infectivity or aphid transmissibility of the particles purified using Celluclast® was 10-100 times greater than those of preparations obtained using laboratory-grade cellulases or no enzyme. The main advantage of using Celluclast® is that at present in Australia its cost is only ca. 1% of laboratory-grade cellulases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim/Background: Transfusion-related acute lung injury (TRALI) is a potentially fatal adverse transfusion reaction. It is hypothesised to occur via a two-insult mechanism: the recipient’s underlying co-morbidity in addition to the transfusion of blood products activate neutrophils in the lung resulting in damaged endothelium and capillary leakage. Neutrophil activation may occur by antibody or non-antibody related mechanisms, with the length of storage of cellular blood products implicated in the latter. This study investigated non-antibody mediated priming and/or activation of neutrophil oxidative burst. Methods: A cytochrome C reduction assay was used to assess priming and activation of neutrophil oxidative burst by pooled supernatant (SN) from day 1 (D1; n=75) and day 42 (D42; n=113) packed red blood cells (PRBC). Pooled PRBC-SN were assessed in parallel with PAF (priming), fMLP (activating), PAF + fMLP (priming + activating) and buffer only (negative) controls. Cytochrome C reduction was measured over 30min at 37oC (inclusive of 10min priming). Neutrophil activation by PRBC-SN was assessed cf. buffer only and neutrophil priming by PRBC-SN was assessed by co-incubation with fMLP cf. fMLP alone. One-way ANOVA; Newman-Keuls post-test; p<0.05; n=10 independent assays. Results: Neither D1- nor D42- PRBC-SN alone activated neutrophil oxidative burst. In addition, D1-PRBC-SN did not prime fMLP-activated neutrophil oxidative burst. D42-PRBC-SN did, however, prime neutrophils for subsequent activation of oxidative burst by fMLP, the magnitude of response being similar to PAF (a known neutrophil priming agonist). Conclusion: These findings are consistent with the two-insult mechanism of TRALI. Factors released into the SN during PRBC storage contributed to neutrophil priming synergistically with other neutrophil stimulating agonists. This implicates PRBC storage duration as a key factor contributing to non-immune neutrophil activation in the development of TRALI in patients with pre-disposing inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. We have previously reported an effective low temperature (90 °C) process at atmospheric pressure for pretreatment of sugarcane bagasse with acidified mixtures of ethylene carbonate (EC) and ethylene glycol (EG). In this study, “greener” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90 °C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified EC. Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.