962 resultados para allele polymorphism
Resumo:
Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.
Resumo:
OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-β pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-β/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-β-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.
Resumo:
Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disorders, including Huntington"s disease. In view ofthese data andthe involvement of huntingtin in intracellular trafficking, we examined the intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP analysis showed retention of Met-BDNF inthe Golgi apparatus with respectto Val-BDNF in wild-type cells. Strikingly, mutant huntingtin diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of transport vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin severely affectedthe KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi trafficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it did not change those that follow the constitutive pathway (p75 NTR ). We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition, our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.
Resumo:
To study whether inversions (or arrangements) by themselves or karyotypes are the main global warming adaptive target of natural selection, two Drosophila subobscura Serbian populations (Apatin and Petnica) were re analyzed using different statistical approaches. Both populations were sampled in an approximately 15 years period: Apatin in 1994 and 2008 + 2009 and Petnica in 1995 and 2010. For all chromosomes, the four collections studied were in Hardy-Weinberg equilibrium. Thus, it seems that inversions (or arrangements) combined at random to constitute populations" karyotypes. However, there were differences in karyotypic fre quencies along the years, although they were significant only for Apatin population. It is possible to conclude that inversions (or arrangements) are likely the target of natural selection, because they presented long term changes, but combine at random to generate the corresponding karyotypic combinations. As a consequence, the frequencies of karyotypes also change along time.
Resumo:
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.
Resumo:
The interplay between selection and aspects of the genetic architecture of traits (such as linkage, dominance, and epistasis) can either drive or constrain speciation [1-3]. Despite accumulating evidence that speciation can progress to "intermediate" stages-with populations evolving only partial reproductive isolation-studies describing selective mechanisms that impose constraints on speciation are more rare than those describing drivers. The stick insect Timema cristinae provides an example of a system in which partial reproductive isolation has evolved between populations adapted to different host plant environments, in part due to divergent selection acting on a pattern polymorphism [4, 5]. Here, we demonstrate how selection on a green/melanistic color polymorphism counteracts speciation in this system. Specifically, divergent selection between hosts does not occur on color phenotypes because melanistic T. cristinae are cryptic on the stems of both host species, are resistant to a fungal pathogen, and have a mating advantage. Using genetic crosses and genome-wide association mapping, we quantify the genetic architecture of both the pattern and color polymorphism, illustrating their simple genetic control. We use these empirical results to develop an individual-based model that shows how the melanistic phenotype acts as a "genetic bridge" that increases gene flow between populations living on different hosts. Our results demonstrate how variation in the nature of selection acting on traits, and aspects of trait genetic architecture, can impose constraints on both local adaptation and speciation.
Resumo:
Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.
Resumo:
INTRODUCTION: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout. METHODS: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. RESULTS: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. CONCLUSION: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β - the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
Resumo:
We examined the genetic population structure of the european hake (Merluccius merluccius) using electrophoretically detectable population markers in 35 protein loci. Samples were collected from 7 locations in the Atlantic Ocean and Mediterranean Sea. Six loci were polymorphic using the 0.05 criterion of polymorphism. Sample heterozigosities ranged from 0.052 to 0.072 and averaged 0.0625. In this study, significant allele frequency differences were detected between Atlantic and Mediterranean populations in three polymorphic loci: GAPDH-1*, GPI-2* and SOD-1*. Two major genetic groups were considered: a North-Atlantic stock and the Mediterranean stock. The Nei genetic distance, D, (based on 33 loci) between samples from these two groups ranged from 0.002 to 0.006. Genetic differenciation between these areas appears to reflect the barrier effect of Strait of Gibraltar. On average over loci, 96.92 % of the total gene diversity was contained within samples, 0.23 % expressed differences among locations within areas, and 2.64 % differences between regions. A review of morphological variation together with the genetic data presented here suggest that the populations of hake from these areas are subdivided into two different stocks: the North-Atlantic stock and the Mediterranean stock. The most conservative approach to the management of these stocks is to consider the Atlantic and Mediterranean stocks independently from oneanother
Resumo:
Inflammation is involved in cardiovascular diseases. Some studies have found that the Mediterranean diet (MD) can reduce serum concentrations of inflammation markers. However, none of these studies have analyzed the influence of genetic variability in such a response. Our objective was to study the effect of the -765G.C polymorphism in the cyclooxygenase-2 (COX-2) gene and the -174G.C polymorphism in the interleukin-6 (IL-6) gene on serum concentrations of IL-6, C-reactive protein, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 as well as their influence on the response toa nutritional interventionwithMD.An intervention study ina high cardiovascular riskMediterranean population (314 men and 407 women) was undertaken. Participants were randomly assigned to consume a low-fat control diet or a MD supplementedwith virgin olive oil ornuts.Measureswereobtained at baseline and after a 3-mointervention period.At baseline, the COX-2 -765G.C polymorphismwas associated with lower serum IL-6 (5.85 6 4.82 in GG vs. 4.74 6 4.14 ng/L in C-allele carriers; P ¼ 0.002) and ICAM-1 (265.8 6 114.8 in GG vs. 243.0 6 107.1 mg/L in C-carriers; P ¼ 0.018) concentrations. These differences remained significant aftermultivariate adjustment. The IL-6 -174G.C polymorphism was associatedwith higher (CC vs. G-carriers) serumICAM-1concentrations in bothmenandwomenandwithhigherserumIL-6 concentrations inmen.Following the dietary intervention, no significant gene x diet interactions were found. In conclusion, although COX-2 -765G.C and IL-6 -174G.C polymorphismswere associatedwith inflammation, consuming aMD(either supplemented with virgin olive oil or nuts) reduced the concentration of inflammation markers regardless of these polymorphisms.
Resumo:
NlmCategory="UNASSIGNED">Metabolic syndrome after transplantation is a major concern following solid organ transplantation (SOT). The CREB-regulated transcription co-activator 2 (CRTC2) regulates glucose metabolism. The effect of CRTC2 polymorphisms on new-onset diabetes after transplantation (NODAT) was investigated in a discovery sample of SOT recipients (n1=197). Positive results were tested for replication in two samples from the Swiss Transplant Cohort Study (STCS, n2=1294 and n3=759). Obesity and other metabolic traits were also tested. Associations with metabolic traits in population-based samples (n4=46'186, n5=123'865, n6>100,000) were finally analyzed. In the discovery sample, CRTC2 rs8450-AA genotype was associated with NODAT, fasting blood glucose and body mass index (Pcorrected<0.05). CRTC2 rs8450-AA genotype was associated with NODAT in the second STCS replication sample (odd ratio (OR)=2.01, P=0.04). In the combined STCS replication samples, the effect of rs8450-AA genotype on NODAT was observed in patients having received SOT from a deceased donor and treated with tacrolimus (n=395, OR=2.08, P=0.02) and in non-kidney transplant recipients (OR=2.09, P=0.02). Moreover, rs8450-AA genotype was associated with overweight or obesity (n=1215, OR=1.56, P=0.02), new-onset hyperlipidemia (n=1007, OR=1.76, P=0.007), and lower high-density lipoprotein-cholesterol (n=1214, β=-0.08, P=0.001). In the population-based samples, a proxy of rs8450G>A was significantly associated with several metabolic abnormalities. CRTC2 rs8450G>A appears to have an important role in the high prevalence of metabolic traits observed in patients with SOT. A weak association with metabolic traits was also observed in the population-based samples.The Pharmacogenomics Journal advance online publication, 8 December 2015; doi:10.1038/tpj.2015.82.
Resumo:
Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.
Resumo:
When analyzing the chromosomal polymorphism of D. subobscura natural populations it is assumed that the information provided by wild males and sons of wild females is equivalent. Thus, using both in the analysis it is possible to increase the sample size. However, it is important to verify whether there are significant differences between both groups or not. The aim of this research has been to statistically compare the results of chromosomal polymorphism of both groups. We have used data from Avala Mountain (Serbia) where D. subobscura flies were collected from the 30th May to the 5th June 2011. Avala is located 18 km south of Belgrade and the trapping place is a forest with polydominant communities of Fagetum submontanum Table 1. Number and percentage of adult flies collected in Font Groga (Barcelona, Spain) on 9th October 2013. Males and sons of wild females were crossed with virgin females of the Küsnacht strain. Third instar larvae from F1 were dissected to obtain the salivary glands and the polytene chromosomes were stained and squashed in aceto-orcein solution. No significant differences were observed for any chromosome of the karyotype: A (p-value = 0.485), J (p-value = 0.230), U (p-value =0.572), E (p-value = 0.536), and O (p-value = 0.338). Thus, it seems that the two groups can be grouped together to obtain the chromosomal polymorphism of the population.