914 resultados para abstract reasoning
Resumo:
This study focuses on those substantial changes that characterize the shift of Vietnam’s macroeconomic structures and evolution of micro-structural interaction over an important period of 1991-2008. The results show that these events are completely distinct in terms of (i) Economic nature; (ii) Scale and depth of changes; (iii) Start and end results; and, (iv) Requirement for macroeconomic decisions. The study rejected a suspicion of similarity between the contagion of the Asian financial crisis in 1997-98 and economic chaos in the first half of 2008 (starting from late 2007). The depth, economic settings of, and interconnection between macro choices and micro decisions have all grown up significantly, partly due to a much deeper level of integration of Vietnam into the world’s economy. On the one hand, this phenomenon gives rise to efficiency of macro level policies because the consideration of micro-structural factors within the framework has definitely become increasingly critical. On the other and, this is a unique opportunity for the macroeconomic mechanism of Vietnam to improve vastly, given the context in which the national economy entered an everchanging period under pressures of globalization and re-integration. The authors hope to also open up paths for further empirical verifications and to stress on the fact that macro policies will have, from now on, to be decided in line with changing micro-settings, which specify a market economy and decide the degree of success of any macroeconomic choices.
Resumo:
Concepts are mental representations that are the constituents of thought. EdouardMachery claims that psychologists generally understand concepts to be bodies of knowledge or information carrying mental states stored in long term memory that are used in the higher cognitive competences such as in categorization judgments, induction, planning, and analogical reasoning. While most research in the concepts field generally have been on concrete concepts such as LION, APPLE, and CHAIR, this paper will examine abstract moral concepts and whether such concepts may have prototype and exemplar structure. After discussing the philosophical importance of this project and explaining the prototype and exemplar theories, criticisms will be made against philosophers, who without experimental support from the sciences of the mind, contend that moral concepts have prototype and/or exemplar structure. Next, I will scrutinize Mark Johnson's experimentally-based argument that moral concepts have prototype structure. Finally, I will show how our moral concepts may indeed have prototype and exemplar structure as well as explore the further ethical implications that may be reached by this particular moral concepts conclusion. © 2011 Springer Science+Business Media B.V.
Resumo:
BACKGROUND: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. DESCRIPTION: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. CONCLUSIONS: The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de tercero y cuarto de Secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
The detailed study of difficulties and errors in young learner comprehension is a relevant and productive research field in Mathematics Education. Studies in the field are numerous although somewhat too varied. The present paper is suggesting methodological perspectives and principles applying to the field of research; we also show an example with school work. The use of figurate numbers as a representation system gives richer conceptual values, boosts visual reasoning and facilitates learner understanding.
Resumo:
We present an analysis of the inductive reasoning of twelve Spanish secondary students in a mathematical problem-solving context. Students were interviewed while they worked on two different problems. Based on Polya´s steps and Reid’s stages for a process of inductive reasoning, we propose a more precise categorization for analyzing this kind of reasoning in our particular context. In this paper we present some results of a wider investigation (Cañadas, 2002).
Resumo:
In this paper we present an analysis of the inductive reasoning of twelve secondary students in a mathematical problem-solving context. Students were proposed to justify what is the result of adding two even numbers. Starting from the theoretical framework, which is based on Pólya’s stages of inductive reasoning, and our empirical work, we created a category system that allowed us to make a qualitative data analysis. We show in this paper some of the results obtained in a previous study.
Resumo:
Guest editorial
Resumo:
This paper describes the architecture of the case based reasoning (CBR) component of Smartfire, a fire field modelling tool for use by members of the Fire Safety Engineering community who are not expert in modelling techniques. The CBR system captures the qualitative reasoning of an experienced modeller in the assessment of room geometries so as to set up the important initial parameters of the problem. The system relies on two important reasoning principles obtained from the expert: 1) there is a natural hierarchical retrieval mechanism which may be employed; and 2) much of the reasoning on a qualitative level is linear in nature, although the computational solution of the problem is non-linear. The paper describes the qualitative representation of geometric room information on which the system is based, and the principles on which the CBR system operates.
Resumo:
This paper describes the approach to the modelling of experiential knowledge in an industrial application of Case-Based Reasoning (CBR). The CBR involves retrieval techniques in conjunction with a relational database. The database is especially designed as a repository of experiential knowledge, and includes qualitative search indices. The system is intended to help design engineers and material engineers in the submarine cable industry. It consists of three parts: a materials database; a database of experiential knowledge; and a CBR system used to retrieve similar past designs based upon component and material qualitative descriptions. The system is currently undergoing user testing at the Alcatel Submarine Networks site in Greenwich.
Resumo:
This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.
Resumo:
This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.
Resumo:
Numerical models are important tools used in engineering fields to predict the behaviour and the impact of physical elements. There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. This paper considers how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor problem. The paper describes example problems faced by design engineers in this context and the issues that need to be considered in this approach. Solution of these problems require methods to handle constraints in both the retrieval phase and the adaptation phase of a typical CBR cycle. We show approaches to the solution of these problesm via a CBR tool.