894 resultados para ZIRCONIA POWDERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi4-xLaxTi3O12 (BLT) thin films and powders with x ranging from 0 to 0.75 were prepared by the polymeric precursor solution. The effect of lanthanum on the structure of BIT powders was investigated by Rietveld Method. The increase of lanthanum content does not lead to any secondary phases. Orthorhombicity of the bismuth titanate (BIT) crystal lattice decreased with the increase of lanthanum content due the reduction of a/b ratio. The BLT films show piezoelectric coefficients of 45, 19, 16 and 10 pm/V for x = 0, 0.25, 0.50 and 0.75, respectively. The piezoelectric response is strongly reduced by the amount of lanthanum added to the system. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports the synthesis of the MgNb(2)O(6) and the ferroelectric lead magnesium niobate Pb(Mg(1/3)Nb(2/3))O(3) (PMN) using fine precursor powders obtained from a chemical Oxide Precursor Method (OPM). To obtain pyrochlore-free PMN ceramics, the synthesis of the precursor MgNb(2)O(6) powders was studied for 2-25 mol% excess of MgO and 10 mol% excess of PbO. Structural and microstructural properties of the sintered ceramics obtained by the cited method and by the classical columbite method were studied and compared. Results lead to good quality, pyrochlore-free PMN ceramic prepared by OPM, presenting greater grain size if compared with ceramic prepared by columbite method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350°C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100º up to 1200ºC in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, electrical and structural properties were reported for pyrochlore free (1-x)[Pb(Mg1/3Nb2/3)O-3] - xPbTiO(3) (PMN-PT) (with 35 mol% PbTiO3) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (epsilon '-i epsilon '') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (epsilon(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C