834 resultados para Woolen and worsted manufacture.
Resumo:
Bacteria are minute unicellular organisms present in abundance in air, water, soil and food and in association with the human body. The majority of bacteria are harmless to humans while a few are useful and have been exploited in, for example, the manufacture of dairy products. However, bacteria are also pathogenic and those include some of the most important human infections such as typhoid, syphilis and tuberculosis. A few bacteria are especially important to optometrists because they are associated with ocular disease, either by causing a primary eye infection or because there are ocular complications of a systemic bacterial infection.
Resumo:
This article on the basic concepts of genetics concentrates on doeoxyribose nucleic acid (DNA), the chemical constituent of the genes. First, it will cover how DNA was discovered to be the substance of the genes. Second, the structure of DNA is revealed together with how DNA molecules can make copies of themselves. Third, the nature of the genetic code contained in DNA and how this code directs the manufacture of proteins is described. Finally, the effects of mutation of the genes and how the activities of genes are regulated will be discussed together with the relevance of these concepts to ocular disease.
Resumo:
The initial aim of this project was to improve the performance of a chromatographic bioreactor-separator (CBRS). In such a system, a dilute enzyme solution is pumped continuously through a preparative chromatographic column, while pulses of substrate are periodically injected on to the column. Enzymic reaction and separation are therefore performed in a single unit operation. The chromatographic columns used were jacketed glass columns ranging from 1 to 2 metres long with an internal diameter of 1.5 cm. Linking these columns allowed 1, 2, 3 and 4 metre long CBRS systems to be constructed. The hydrolysis of lactose in the presence of β~galactosidase was the reaction of study. From previous work at Aston University, there appeared to be no difficulties in achieving complete lactose hydrolysis in a CBRS. There did, however, appear to be scope for improving the separative performance, so this was adopted as an initial goal. Reducing the particle size of the stationary phase was identified as a way of achieving this improvement. A cation exchange resin was selected which had an average particle size of around half that previously used when studying this reaction. A CBRS system was developed which overcame the operational problems (such as high pressure drop development) associated with use of such a particle size. A significant improvement in separative power was achieved. This was shown by an increase in the number of theoretical plates (N) from about 500 to about 3000 for a 2 metre long CBRS, coupled with higher resolution. A simple experiment with the 1 metre column showed that combined bioreaction and separation was achievable in this system. Having improved the separative performance of the system, the factors affecting enzymic reaction in a CBRS were investigated; including pulse volume and the degree of mixing between enzyme and substrate. The progress of reaction in a CBRS was then studied. This information was related to the interaction of reaction and separation over the reaction zone. The effect of injecting a pulse over a length of time as in CBRS operation was simulated by fed batch experiments. These experiments were performed in parallel with normal batch experiments where the substrate is mixed almost instantly with the enzyme. The batch experiments enabled samples to be taken every minute and revealed that reaction is very rapid. The hydrodynamic characteristics of the two injector configurations used in CBRS construction were studied using Magnetic Resonance Imaging, combined with hydrodynamic calculations. During the optimisation studies, galactooligosaccharides (GOS) were detected as intermediates in the hydrolysis process. GOS are valuable products with potential and existing applications in food manufacture (as nutraceuticals), medicine and drug targeting. The focus of the research was therefore turned to GOS production. A means of controlling reaction to arrest break down of GOS was required. Raising temperature was identified as a possible means of achieving this within a CBRS. Studies were undertaken to optimise the yield of oligosaccharides, culminating in the design, construction and evaluation of a Dithermal Chromatographic Bioreactor-separator.
Resumo:
At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).
Resumo:
Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.
Resumo:
This work studies the development of polymer membranes for the separation of hydrogen and carbon monoxide from a syngas produced by the partial oxidation of natural gas. The CO product is then used for the large scale manufacture of acetic acid by reaction with methanol. A method of economic evaluation has been developed for the process as a whole and a comparison is made between separation of the H2/CO mixture by a membrane system and the conventional method of cryogenic distillation. Costs are based on bids obtained from suppliers for several different specifications for the purity of the CO fed to the acetic acid reactor. When the purity of the CO is set at that obtained by cryogenic distillation it is shown that the membrane separator offers only a marginal cost advantage. Cost parameters for the membrane separation systems have been defined in terms of effective selectivity and cost permeability. These new parameters, obtained from an analysis of the bids, are then used in a procedure which defines the optimum degree of separation and recovery of carbon monoxide for a minimum cost of manufacture of acetic acid. It is shown that a significant cost reduction is achieved with a membrane separator at the optimum process conditions. A method of "targeting" the properties of new membranes has been developed. This involves defining the properties for new (hypothetical -yet to be developed) membranes such that their use for the hydrogen/carbon monoxide separation will produce a reduced cost of acetic acid manufacture. The use of the targeting method is illustrated in the development of new membranes for the separation of hydrogen and carbon monoxide. The selection of polymeric materials for new membranes is based on molecular design methods which predict the polymer properties from the molecular groups making up the polymer molecule. Two approaches have been used. One method develops the analogy between gas solubility in liquids and that in polymers. The UNIFAC group contribution method is then used to predict gas solubility in liquids. In the second method the polymer Permachor number, developed by Salame, has been correlated with hydrogen and carbon monoxide permeabilities. These correlations are used to predict the permeabilities of gases through polymers. Materials have been tested for hydrogen and carbon monoxide permeabilities and improvements in expected economic performance have been achieved.
Resumo:
Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.
Resumo:
Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.
Resumo:
The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.
Resumo:
Computer integrated manufacture has brought about great advances in manufacturing technology and its recognition is world wide. Cold roll forming of thin-walled sections, and in particular the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is but one such area where computer integrated manufacture can make a positive contribution. The work reported in this thesis, concerned with the development of an integrated manufacturing system for assisting the design and manufacture of form-rolls, was undertaken in collaboration with a leading manufacturer of thin-walled sections. A suit of computer programs, written in FORTRAN 77, have been developed to provide computer aids for every aspect of work in form-roll design and manufacture including cost estimation and stock control aids. The first phase of the development programme dealt with the establishment of CAD facilities for form-roll design, comprising the design of the finished section, the flower pattern, the roll design and the interactive roll editor program. Concerning the CAM facilities, dealt with in the second phase, an expert system roll machining processor and a general post-processor have been developed for considering the roll geometry and automatically generating NC tape programs for any required CNC lathe system. These programs have been successfully implemented, as an integrated manufacturing software system, on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of the integrated system has been found beneficial in all aspects of form-roll design and manufacture. Design and manufacturing lead times have been reduced by several weeks, quality has improved considerably and productivity has increased. The work has also demonstrated the promising nature of the expert systems approach to computer integrated manufacture.
Resumo:
The present study describes a pragmatic approach to the implementation of production planning and scheduling techniques in foundries of all types and looks at the use of `state-of-the-art' management control and information systems. Following a review of systems for the classification of manufacturing companies, a definitive statement is made which highlights the important differences between foundries (i.e. `component makers') and other manufacturing companies (i.e. `component buyers'). An investigation of the manual procedures which are used to plan and control the manufacture of components reveals the inherent problems facing foundry production management staff, which suggests the unsuitability of many manufacturing techniques which have been applied to general engineering companies. From the literature it was discovered that computer-assisted systems are required which are primarily `information-based' rather than `decision based', whilst the availability of low-cost computers and `packaged-software' has enabled foundries to `get their feet wet' without the financial penalties which characterized many of the early attempts at computer-assistance (i.e. pre-1980). Moreover, no evidence of a single methodology for foundry scheduling emerged from the review. A philosophy for the development of a CAPM system is presented, which details the essential information requirements and puts forward proposals for the subsequent interactions between types of information and the sub-system of CAPM which they support. The work developed was oriented specifically at the functions of production planning and scheduling and introduces the concept of `manual interaction' for effective scheduling. The techniques developed were designed to use the information which is readily available in foundries and were found to be practically successful following the implementation of the techniques into a wide variety of foundries. The limitations of the techniques developed are subsequently discussed within the wider issues which form a CAPM system, prior to a presentation of the conclusions which can be drawn from the study.
Resumo:
Conventional methods of form-roll design and manufacture for Cold Roll-Forming of thin-walled metal sections have been entirely manual, time consuming and prone to errors, resulting in inefficiency and high production costs. With the use of computers, lead time can be significantly improved, particularly for those aspects involving routine but tedious human decisions and actions. This thesis describes the development of computer aided tools for producing form-roll designs for NC manufacture in the CAD/CAM environment. The work was undertaken to modernise the existing activity of a company manufacturing thin-walled sections. The investigated areas of the activity, including the design and drafting of the finished section, the flower patterns, the 10 to 1 templates, and the rolls complete with pinch-difference surfaces, side-rolls and extension-contours, have been successfully computerised by software development . Data generated by the developed software can be further processed for roll manufacturing using NC lathes. The software has been specially designed for portability to facilitate its implementation on different computers. The Opening-Radii method of forming was introduced as a subsitute to the conventional method for better forming. Most of the essential aspects in roll design have been successfully incorporated in the software. With computerisation, extensive standardisation in existing roll design practices and the use of more reliable and scientifically-based methods have been achieved. Satisfactory and beneficial results have also been obtained by the company in using the software through a terminal linked to the University by a GPO line. Both lead time and productivity in roll design and manufacture have been significantly improved. It is therefore concluded that computerisation in the design of form-rolls for automation by software development is viable. The work also demonstrated the promising nature of the CAD/CAM approach.
Resumo:
This thesis is an exploration of the social and political processes involved in the introduction of new technology to the shopfloor. Through a series of case studies of applications of microelectronics to batch manufacture, it attempts to uncover the ways in which the values and interests of managers, engineers, workers and others profoundly influence the choice and use of technology, and thus the work organisation which emerges. Previous analyses have tended to treat new technology as if it had "impacts" on work organisation - especially skills - which are inevitable in particular technical and economic circumstances. It is in opposition to this view that technical change is here treated as a matter for social choice and political negotiation, the various interested parties to the change being shown to attempt to incorporate their own interests into the technical and social organisation of work. Section one provides the relevant background to the case studies by summarising and criticising previous theoretical and empirical work in the area. The inadequacies of this work for our concerns are drawn out, and the need for detailed studies of the political aspects of technical change is justified. The case studies are presented in section two as a set of "episodes" of innovation, and section three analyses the empirical findings. The innovations are compared and contrasted in order to illustrate the social and political dynamics involved in the various stages of the innovation process. Finally some comments are made on policy issues for which the research has important implications.
Resumo:
This thesis describes the history of robots and explains the reasons for the international differences in robot diffusion, and the differences in the diffusion of various robot applications with reference to the UK. As opposed to most of the literature, diffusion is examined with an integrated and interdisciplinary perspective. Robot technology evolves from the interaction of development, supply and manufacture, adoption, and promotion. activities. Emphasis is given to the analysis of adoption, at present the most important limiting factor of robot advancement in the UK. Technical development is inferred from a comparison of surveys on equipment, and from the topics of ten years of symposia papers. This classification of papers is also used to highlight the international and institutional differences in robot development. Analysis of the growth in robot supply, manufacture, and use is made from statistics compiled. A series of interviews with users and potential users serves to illustrate the factors and implications of the adoption of different robot systems in the UK. Adoption pioneering takes place when several conditions exist: when the technology is compatible with the firm, when its advantages outweigh its disadvantages, and particularly when a climate exists which encourages the managerial involvement and the labour acceptance. The degree of compatibility (technical, methodological, organisational, and economic) and the consequences (profitability, labour impacts, and managerial effects) of different robot systems (transfer, manipulative, processing, and assembly) are determined by various aspects of manufacturing operations (complexity, automation, integration, labour tasks, and working conditions). The climate for adoption pioneering is basically determined by the performance of firms. The firms' policies on capital investment have as decisive a role in determining the profitability of robots as their total labour costs. The performance of the motor car industry and its machine builders explains, more than any other factor, the present state of robot advancement in the UK.
Resumo:
Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50µm based on poly(methyl methacrylate) (PMMA) and second, endlessly single mode PCF with a core diameter of 6µm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths to no longer than 10cm. However, both have improved attenuation of under 10dB/m in the 800nm spectral region, thus allowing for fibre lengths to be much longer. The focus of current research is to utilise the increased fibre length, widening the range of sensor applications. The Bragg wavelength shift of a grating fabricated in PMMA fibre at 827nm has been monitored whilst the POF is thermally annealed at 80°C for 7 hours. The large length of POF enables real time monitoring of the grating, which demonstrates a permanent negative Bragg wavelength shift of 24nm during the 7 hours. This creates the possibility to manufacture multiplexed Bragg sensors in POF using a single phase mask in the UV inscription manufacturing. TOPAS holds certain advantages over PMMA including a much lower affinity for water, this should allow for the elimination of cross-sensitivity to humidity when monitoring temperature changes or axial strain, which is a significant concern when using PMMA fibre.