989 resultados para Western Indian Ocean
Resumo:
Chloroform extracts of water-soluble organic matter collected in the water column from the surface to the bottom were studied by C-13 and H-1 NMR chromatographic mass spectrometry, and phthalate concentrations were determined by capillary gas-liquid chromatography. More than 14 compounds were found including diethyl phthalate, ethyl butyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, phthalates with normal C4-C12 chains, phthalates partially esterified with methanol, and others, at total concentrations up to 0.4 mg/l. Possible reasons for presence of phthalates in oceans, sometimes in high concentrations, are discussed.
Resumo:
87Sr/86Sr ratios of well-preserved early Miocene-Oligocene planktonic foraminifers from Site 744 in the southern Indian Ocean provide the highest southern latitude Sr isotope record of this age. The isotopic data have been calibrated with the site magnetostratigraphy. 87Sr/86Sr ages were also determined using the Sr isotope-age equations of Miller et al. (1988, doi:10.1029/PA003i002p00223) and Hess et al. (1989, doi:10.1029/PA004i006p00655). There is good agreement between the calculated ages from 87Sr/86Sr measurements using these equations and those derived from magnetobiostratigraphy. In addition, these equations were useful for inference of sediment ages in intervals where the paleomagnetic record is not well resolved and the biostratigraphy is inconclusive. The Site 744 87Sr/86Sr record can be used for correlation of Antarctic and low-latitude sequences and biostratigraphical zonation of foraminifers, radiolarians, diatoms, and calcareous nannofossils. This record will assist in the development of the high southern latitude biochronology.
Resumo:
A method is presented to study carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). Analysis of the carbohydrates is based on consecutive separation of their fractions with different solvents (water, alkali, and acid). Ratios of carbohydrate fractions allows to evaluate lability of carbohydrate complexes. They are also usable as an indicators of biogeochemical processes in the ocean, as well of genesis and degree of transformation of organic matter in bottom sediments and nodules. Similarity in monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.
Resumo:
In 1905, the Percy Sladen Trust Expedition, under the supervision of Stanley Gardiner in H.M.S. 'Sealark' made an extensive cruise in the Indian Ocean. The author received 79 samples from Mr. Gardiner which were thoroughly examined.
Resumo:
Geochemical changes in organic matter of bottom sediments from the Mozambique Basin at the river-sea barrier from the mouths of the Zambezi and Limpopo rivers toward the pelagic zone are discussed. Changes in bitumen, hydrolyzable material, humic acids, amino acids, n-alkanes, and polycyclic aromatic compounds resulting from genetic and diagenetic factors are described. This information is significant for paleoceanology reconstructions and for knowing ways of organic matter transformation into fossil forms.
Resumo:
This study attempts to understand the significance of Uvigerina proboscidea in paleoceanographic reconstructions at the northern (tropical) Indian Ocean DSDP Site 214 from the Late Miocene through the Pleistocene. In this interval at this site, U. proboscidea is the most abundant species of the benthic assemblage and shows abrupt frequency changes (about 1-74%). Based on relative percentages of U. proboscidea calibrated with oxygen and carbon isotope record and the sediment accumulation rates, the modern distribution of the species in the Indian Ocean, and other evidence, the peaks of abundance of U. proboscidea are inferred to represent times of high-surface productivity, This productivity is related to intensified trade winds during strong southwest (SW) Indian monsoons, causing widespread upwelling along equatorial divergemce in the Indian Ocean. The sudden increase of U. proboscidea abundance at approximately 8.5-7.5 Ma reflects significant upwelling at the equatorial divergence. This event corresponds to the permanent build-up of West Antarctic ice sheets, and a major increase in SW Indian monsoons related upwelling in the northwestern Indian Ocean. The Chron-6 carbon shift at approximately 6.2 Ma is marked by another peak of abundance, reflecting widespread ocean fertility. The highest abundances of U. proboscidea and highest sediment accumulation rates occur between 5.8 and 5.1 Ma, which coincidies with the greatest development of Antarctic ice sheets and strong southwest monsoons. The higher percentages at 3.2-3.1 Ma, approximately 2.4 Ma, and 1.6 Ma all represent phases of high productivity at the equatorial divergence.
Resumo:
The Indian Ocean covers approximately 73.5 * 10**6 km**3 from 25°N to 67°S and from 20° to 120°E. Several legs of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) have operated in its waters, many penetrating the Cretaceous. Most of the scientific drill sites are DSDP related and thus pre-dated modern biostratigraphic conventions. Foraminifers and calcareous nannoplankton were by far the dominant fossil groups studied in the earlier work, supplemented occasionally by studies of other fossil groups, The results of the Ocean Drilling Project phase are yet too young to be fully integrated but have been based on a broader range of techniques and fossil groups. During most of the Cretaceous, the proto-Indian Ocean basin lay in middle to high latitudes. Thus, it is unrealistic to expect successful routine application of low-latitude zonations. No planktonic foraminifer zonal scheme has been developed for the Indian Ocean basin for several reasons. There are no sections with complete or even significant partial sections to allow development of such a zonation. Carbonate compensation depth (CCD) effects have been marked in most sections, and significant intervals are devoid of planktonic foraminifers. The Indian Ocean now covers a great latitudinal range from tropics to polar regions and, at first glance, no scheme can be expected to be applicable over that entire range. In the Cretaceous the area was much smaller, though expanding progressively, and the paleolatitude range was quite small. Calcareous nannoplankton have proved valuable in dating Indian Ocean Cretaceous sediments and have, perhaps in contrast with the foraminifers, been consistently a more reliable means of applying zonal schemes developed elsewhere. For the Albian-Aptian, zonations based on well-known benthic foraminifer lineages (Scheibnerova, 1974) have been useful when nothing else was available or effective. Palynology has been used little, but where used, has proved excellent. It has the added value of providing valuable information on nearby terrestrial vegetation as the fossils were resistant to dissolution. Normally, when different fossil groups have been applied to a section, the results have been compatible or compatible to an acceptable degree. There are a few instances where incompatibility is noteworthy, and Site 263 is a classic example, as even two calcareous nannoplankton studies show irreconcilable differences here. All groups gave different results, but one benthic foraminifer analysis agreed with one calcareous nannoplankton study.
Resumo:
Captain Wharton, the Hydrographer of the Admiralty sent to the author a series of the deposit-samples collected in the Indian and Antarctic Oceans during the expeditions in 1887 of H.M.S. Flying Fish, H.M.S. Egeria and H.M.S. Investigator. These deposits were submitted to careful microscopical examination and chemical analysis.
Resumo:
We report the occurrence of ferrobasalts recovered from the Central Indian Ocean Basin crust generated at the Southeast Indian Ridge during a phase of moderate to fast spreading accretion (~110-190 mm/yr, full rate).The rocks are rich in plagioclase, FeO* (13/19 %), and TiO2 (2.27/2.76 %), poor in olivine and MgO (3.44/6.20%), and associated with topographic highs and increased amplitude magnetic anomalies corresponding to chrons A25 and A24. We suggest that secon dary eruptions from ancient N-MORB magma, which may have been trapped at a shallow depth in a horizon of neutral buoyancy, could have produced the ferrobasalts.