890 resultados para Wave-motion, Theory of.
Resumo:
In this paper, we examine the temporal stability of the evidence for two commodity futures pricing theories. We investigate whether the forecast power of commodity futures can be attributed to the extent to which they exhibit seasonality and we also consider whether there are time varying parameters or structural breaks in these pricing relationships. Compared to previous studies, we find stronger evidence of seasonality in the basis, which supports the theory of storage. The power of the basis to forecast subsequent price changes is also strengthened, while results on the presence of a risk premium are inconclusive. In addition, we show that the forecasting power of commodity futures cannot be attributed to the extent to which they exhibit seasonality. We find that in most cases where structural breaks occur, only changes in the intercepts and not the slopes are detected, illustrating that the forecast power of the basis is stable over different economic environments.
Resumo:
We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.
Resumo:
Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.
Resumo:
Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.
Resumo:
This paper generalises and applies recently developed blocking diagnostics in a two- dimensional latitude-longitude context, which takes into consideration both mid- and high-latitude blocking. These diagnostics identify characteristics of the associated wave-breaking as seen in the potential temperature (θ) on the dynamical tropopause, in particular the cyclonic or anticyclonic Direction of wave-Breaking (DB index), and the Relative Intensity (RI index) of the air masses that contribute to blocking formation. The methodology is extended to a 2-D domain and a cluster technique is deployed to classify mid- and high-latitude blocking according to the wave-breaking characteristics. Mid-latitude blocking is observed over Europe and Asia, where the meridional gradient of θ is generally weak, whereas high-latitude blocking is mainly present over the oceans, to the north of the jet-stream, where the meridional gradient of θ is much stronger. They occur respectively on the equatorward and poleward flank of the jet- stream, where the horizontal shear ∂u/∂y is positive in the first case and negative in the second case. A regional analysis is also conducted. It is found that cold-anticyclonic and cyclonic blocking divert the storm-track respectively to the south and to the north over the East Atlantic and western Europe. Furthermore, warm-cyclonic blocking over the Pacific and cold-anticyclonic blocking over Europe are identified as the most persistent types and are associated with large amplitude anomalies in temperature and precipitation. Finally, the high-latitude, cyclonic events seem to correlate well with low- frequency modes of variability over the Pacific and Atlantic Ocean.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
The two-way relationship between Rossby Wave-Breaking (RWB) and intensification of extra tropical cyclones is analysed over the Euro-Atlantic sector. In particular, the timing, intensity and location of cyclone development are related to RWB occurrences. For this purpose, two potential-temperature based indices are used to detect and classify anticyclonic and cyclonic RWB episodes from ERA-40 Re-Analysis data. Results show that explosive cyclogenesis over the North Atlantic (NA) is fostered by enhanced occurrence of RWB on days prior to the cyclone’s maximum intensification. Under such conditions, the eddy-driven jet stream is accelerated over the NA, thus enhancing conditions for cyclogenesis. For explosive cyclogenesis over the eastern NA, enhanced cyclonic RWB over eastern Greenland and anticyclonic RWB over the sub-tropical NA are observed. Typically only one of these is present in any given case, with the RWB over eastern Greenland being more frequent than its southern counterpart. This leads to an intensification of the jet over the eastern NA and enhanced probability of windstorms reaching Western Europe. Explosive cyclones evolving under simultaneous RWB on both sides of the jet feature a higher mean intensity and deepening rates than cyclones preceded by a single RWB event. Explosive developments over the western NA are typically linked to a single area of enhanced cyclonic RWB over western Greenland. Here, the eddy-driven jet is accelerated over the western NA. Enhanced occurrence of cyclonic RWB over southern Greenland and anticyclonic RWB over Europe is also observed after explosive cyclogenesis, potentially leading to the onset of Scandinavian Blocking. However, only very intense developments have a considerable influence on the large-scale atmospheric flow. Non-explosive cyclones depict no sign of enhanced RWB over the whole NA area. We conclude that the links between RWB and cyclogenesis over the Euro-Atlantic sector are sensitive to the cyclone’s maximum intensity, deepening rate and location.
Resumo:
We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e. raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail, and then demonstrate how it could be used in an idealised magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ~15 degrees magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves, and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.
Resumo:
Traditional derivations of available potential energy, in a variety of contexts, involve combining some form of mass conservation together with energy conservation. This raises the questions of why such constructions are required in the first place, and whether there is some general method of deriving the available potential energy for an arbitrary fluid system. By appealing to the underlying Hamiltonian structure of geophysical fluid dynamics, it becomes clear why energy conservation is not enough, and why other conservation laws such as mass conservation need to be incorporated in order to construct an invariant, known as the pseudoenergy, that is a positive‐definite functional of disturbance quantities. The available potential energy is just the non‐kinetic part of the pseudoenergy, the construction of which follows a well defined algorithm. Two notable features of the available potential energy defined thereby are first, that it is a locally defined quantity, and second, that it is inherently definable at finite amplitude (though one may of course always take the small‐amplitude limit if this is appropriate). The general theory is made concrete by systematic derivations of available potential energy in a number of different contexts. All the well known expressions are recovered, and some new expressions are obtained. The possibility of generalizing the concept of available potential energy to dynamically stable basic flows (as opposed to statically stable basic states) is also discussed.
Resumo:
Although Theory of International Politics is a standard-bearer for explanatory theory in international relations (IR), Waltz’s methodology has been subject to numerous quite disparate analyses. One reason why it has proved hard to pin down is that too little attention has been paid to how, in practice, Waltz approaches real-world problems. Despite his neopositivist rhetoric, Waltz applies neorealism in a notably loose, even indeterminate, fashion. There is therefore a disjunction between what he says and what he does. This is partly explained by his unsatisfactory attempt to reconcile his avowed neopositivism with his belief that international politics is characterized by organized complexity. The inconsistencies thus created also help to make sense of why competing interpretations of his methodology have emerged. Some aspects of his work do point beyond these particular methodological travails in ways that will continue to be of interest to IR theorists, but its most enduring methodological lesson may be that rhetoric and practice do not necessarily fit harmoniously together.
Resumo:
We test the expectations theory of the term structure of U.S. interest rates in nonlinear systems. These models allow the response of the change in short rates to past values of the spread to depend upon the level of the spread. The nonlinear system is tested against a linear system, and the results of testing the expectations theory in both models are contrasted. We find that the results of tests of the implications of the expectations theory depend on the size and sign of the spread. The long maturity spread predicts future changes of the short rate only when it is high.
Resumo:
The study of workarounds (WA) has increased in importance due to their impact on patient safety and efficiency. However, there are no adequate theories to explain the motivation to create and use a workaround in a healthcare sitting. Although theories of technology acceptance help to understand the reasons to accept or reject technology, they fail to explain drivers for alternatives. Also workarounds involve creators and performers that have different motivations. Models such as Theory of Planned Behaviour (TPB) or Theory of Reasoned Action (TRA) can help to explain the role of workaround users, but lack explanation of workaround creators’ dynamics. Our aim is to develop a theoretical foundation to explain workaround motivation behaviour models with norms that relate to sanctions to provide an integrated Workaround Motivation Model; WAMM. The development of WAMM model is explained in this paper based on workaround cases as part of further research to establish the model.
Resumo:
Information costs play a key role in determining the relative efficiency of alternative organisational structures. The choice of locations at which information is stored in a firm is an important determinant of its information costs. A specific example of information use is modelled in order to explore what factors determine whether information should be stored centrally or locally and if it should be replicated at different sites. This provides insights into why firms are structured hierarchically, with some decisions and tasks being performed centrally and others at different levels of decentralisation. The effects of new information technologies are also discussed. These can radically alter the patterns and levels of information costs within a firm and so can cause substantial changes in organisational structure.
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.