943 resultados para WLAN positioning
Resumo:
Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.
Resumo:
Patients with stenosed biologic pulmonary conduits require redo cardiac surgery to prevent severe right ventricular dysfunction. Following the latest trends, the trans-catheter pulmonary stent-valve implantation represents a new fascinating alternative carrying a lower operative risk, compared with the standard open-heart re-intervention. Traditionally, the pulmonary stent valve is positioned off pump, under fluoroscopic control, and requires angiographies. However, alternative tools not requiring contrast injections for the intra-operative cardiac imaging have to be also considered strongly. The usefulness of intravascular ultrasound for the positioning of aortic endoprosthesis has already been proven in previous reports and, following the same principle, we have started to routinely implant balloon-expandable stent valves (Edwards Sapien? THV) in stenosed pulmonary valve conduits using intravascular ultrasound for the stent-valve positioning without angiography. We describe the intra-operative intravascular imaging technique with technical details.
Resumo:
Recognition and identification processes for deceased persons. Determining the identity of deceased persons is a routine task performed essentially by police departments and forensic experts. This thesis highlights the processes necessary for the proper and transparent determination of the civil identities of deceased persons. The identity of a person is defined as the establishment of a link between that person ("the source") and information pertaining to the same individual ("identifiers"). Various identity forms could emerge, depending on the nature of the identifiers. There are two distinct types of identity, namely civil identity and biological identity. The paper examines four processes: identification by witnesses (the recognition process) and comparisons of fingerprints, dental data and DNA profiles (the identification processes). During the recognition process, the memory function is examined and helps to clarify circumstances that may give rise to errors. To make the process more rigorous, a body presentation procedure is proposed to investigators. Before examining the other processes, three general concepts specific to forensic science are considered with regard to the identification of a deceased person, namely, matter divisibility (Inman and Rudin), transfer (Locard) and uniqueness (Kirk). These concepts can be applied to the task at hand, although some require a slightly broader scope of application. A cross comparison of common forensic fields and the identification of deceased persons reveals certain differences, including 1 - reverse positioning of the source (i.e. the source is not sought from traces, but rather the identifiers are obtained from the source); 2 - the need for civil identity determination in addition to the individualisation stage; and 3 - a more restricted population (closed set), rather than an open one. For fingerprints, dental and DNA data, intravariability and intervariability are examined, as well as changes in these post mortem (PM) identifiers. Ante-mortem identifiers (AM) are located and AM-PM comparisons made. For DNA, it has been shown that direct identifiers (taken from a person whose civil identity has been alleged) tend to lead to determining civil identity whereas indirect identifiers (obtained from a close relative) direct towards a determination of biological identity. For each process, a Bayesian model is presented which includes sources of uncertainty deemed to be relevant. The results of the different processes combine to structure and summarise an overall outcome and a methodology. The modelling of dental data presents a specific difficulty with respect to intravariability, which in itself is not quantifiable. The concept of "validity" is, therefore, suggested as a possible solution to the problem. Validity uses various parameters that have an acknowledged impact on teeth intravariability. In cases where identifying deceased persons proves to be extremely difficult due to the limited discrimination of certain procedures, the use of a Bayesian approach is of great value in bringing a transparent and synthetic value. RESUME : Titre: Processus de reconnaissance et d'identification de personnes décédées. L'individualisation de personnes décédées est une tâche courante partagée principalement par des services de police, des odontologues et des laboratoires de génétique. L'objectif de cette recherche est de présenter des processus pour déterminer valablement, avec une incertitude maîtrisée, les identités civiles de personnes décédées. La notion d'identité est examinée en premier lieu. L'identité d'une personne est définie comme l'établissement d'un lien entre cette personne et des informations la concernant. Les informations en question sont désignées par le terme d'identifiants. Deux formes distinctes d'identité sont retenues: l'identité civile et l'identité biologique. Quatre processus principaux sont examinés: celui du témoignage et ceux impliquant les comparaisons d'empreintes digitales, de données dentaires et de profils d'ADN. Concernant le processus de reconnaissance, le mode de fonctionnement de la mémoire est examiné, démarche qui permet de désigner les paramètres pouvant conduire à des erreurs. Dans le but d'apporter un cadre rigoureux à ce processus, une procédure de présentation d'un corps est proposée à l'intention des enquêteurs. Avant d'entreprendre l'examen des autres processus, les concepts généraux propres aux domaines forensiques sont examinés sous l'angle particulier de l'identification de personnes décédées: la divisibilité de la matière (Inman et Rudin), le transfert (Locard) et l'unicité (Kirk). Il est constaté que ces concepts peuvent être appliqués, certains nécessitant toutefois un léger élargissement de leurs principes. Une comparaison croisée entre les domaines forensiques habituels et l'identification de personnes décédées montre des différences telles qu'un positionnement inversé de la source (la source n'est plus à rechercher en partant de traces, mais ce sont des identifiants qui sont recherchés en partant de la source), la nécessité de devoir déterminer une identité civile en plus de procéder à une individualisation ou encore une population d'intérêt limitée plutôt qu'ouverte. Pour les empreintes digitales, les dents et l'ADN, l'intra puis l'inter-variabilité sont examinées, de même que leurs modifications post-mortem (PM), la localisation des identifiants ante-mortem (AM) et les comparaisons AM-PM. Pour l'ADN, il est démontré que les identifiants directs (provenant de la personne dont l'identité civile est supposée) tendent à déterminer une identité civile alors que les identifiants indirects (provenant d'un proche parent) tendent à déterminer une identité biologique. Puis une synthèse des résultats provenant des différents processus est réalisée grâce à des modélisations bayesiennes. Pour chaque processus, une modélisation est présentée, modélisation intégrant les paramètres reconnus comme pertinents. À ce stade, une difficulté apparaît: celle de quantifier l'intra-variabilité dentaire pour laquelle il n'existe pas de règle précise. La solution préconisée est celle d'intégrer un concept de validité qui intègre divers paramètres ayant un impact connu sur l'intra-variabilité. La possibilité de formuler une valeur de synthèse par l'approche bayesienne s'avère d'une aide précieuse dans des cas très difficiles pour lesquels chacun des processus est limité en termes de potentiel discriminant.
Resumo:
This User’s Guide serves as a reference for field personnel using the sign inventory data collection software tool. This tool was developed to simplify and standardize the collection and updating of sign inventory information. The software and collection methodology was developed by the Iowa DOT Sign Management Task Force and the Center for Transportation Research and Education at Iowa State University. Required Equipment -The data collection process requires both a portable computer and a global positioning system (GPS) device (connected via USB cable). Since computer battery performance varies, a DC power converter is recommended. A check-in/out process has also been established which allows updates to sign information from the central database.
Resumo:
In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins
Resumo:
This report is on state-of-the-art research efforts specific to infrastructure inventory/data collection with sign inventory as a case study. The development of an agency-wide sign inventory is based on feature inventory and location information. Specific to location, a quick and simple location acquisition tool is critical to tying assets to an accurate location-referencing system. This research effort provides a contrast between legacy referencing systems (route and milepost) and global positioning system- (GPS-) based techniques (latitude and longitude) integrated into a geographic information system (GIS) database. A summary comparison of field accuracies using a variety of consumer grade devices is also provided. This research, and the data collection tools developed, are critical in supporting the Iowa Department of Transportation (DOT) Statewide Sign Management System development effort. For the last two years, a Task Force has embarked on a comprehensive effort to develop a sign management system to improve sign quality, as well as to manage all aspects of signage, from request, ordering, fabricating, installing, maintaining, and ultimately removing, and to provide the ability to budget for these key assets on a statewide basis. This effort supported the development of a sign inventory tool and is the beginning of the development of a sign management system to support the Iowa DOT efforts in the consistent, cost effective, and objective decision making process when it comes to signs and their maintenance.
Resumo:
Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.
Resumo:
In a prospective study the functional results after dissection or preservation of the serratus anterior muscle in the postero-lateral standard thoracotomy were evaluated. In 14 patients of our clinic with dissection and suture and in 14 patients with preservation of the serratus muscle the muscle function was assessed and compared preoperatively, within the first two post-operative weeks, and three months after the operation by the same physiotherapists. The two groups were blinded in regard to age, original disease, and mode of intervention. We compared the wing position of the scapula in the sitting position and the positioning of the scapula at fixation of the shoulder joint in the sitting and in the supine position. Using a four-grade function assessment scheme, both groups obtained the same functional results. There was no seroma in either group. After 2.8 (2.5 to 3.0) years all the surviving patients described symmetric functional conditions. We therefore conclude that in order to achieve a better view of the operative field the serratus muscle may be dissected close to the origin if it is then readapted.
Resumo:
Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.
Resumo:
Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.
Resumo:
Five test flights were conducted to study the use of Global Positioning System (GPS) in Photogrammetry, three in Iowa, one each in California and Texas. These tests show that GPS can be used to establish ground control by the static method and to determine camera location by the kinematic method. In block triangulation, six GPS controls are required and additional elevation control along the centerline is also required in strip triangulation. The camera location determined by aerial triangulation depends on the scale of the photography. The 1:3000 scale photography showed that the absolute accuracy of the camera location by GPS is better than five centimeters. The 1:40000 scale photography showed that the relative accuracy of the camera location by GPS is about one millimeter. In a strip triangulation elevation control is required in addition to the camera location by GPS. However, for block triangulation camera location by GPS is sufficient. Pre-targeting of pass and tie points gives the best results in both block and strip triangulation. In normal mapping for earth work computations the use of 1:6000 scale photography with GPS control instead of 1:3000 scale is recommended. It is recommended that research be done in the use of GPS for navigation in aerial photographic missions. It is highly recommended that research be done in the use of GPS to determine tip and tilt of the aerial camera, that is required in stereoplotting.
Resumo:
The objective of this project was to use a Global Positioning System (GPS) to determine the aerial camera location and orientation that best facilitated mapping done from aerial photographs without any ground control. Four test flights were conducted. The first test flight was performed in June 1993 at St. Louis, with the objective of testing the multiantenna concept using two antenna on the aircraft. The second test in August 1993 was conducted over the Iowa State University (ISU) campus at Ames. This flight evaluated the use of GPS for pinpoint navigation. The third test flight over St. Louis was flown in October 1993, with four antenna on aircraft; its objective was to evaluate the 3DF GPS receiver and the antenna locations. On the basis of the results of these three tests, a final test flight over the Mustang Project area in Ames and the ISU campus was conducted in June 1994. Analysis of these data showed that airborne GPS can be used (1) in pinpoint navigation with an accuracy of 25 m or better, (2) to determine the location of the camera nodal point with an accuracy of 10 cm or better, and (3) to determine the orientation angles of the camera with an accuracy of 0.0001 radians or better. In addition, the exterior orientation elements determined by airborne GPS can be used to rectify aerial photos, to produce orthophotos, and in direct stereo plotting. Further research is recommended in these areas to maximize the use of airborne GPS. The report is organized in the following chapters: (1) Introduction; (2) Photogrammetry and Kinematic GPS; (3) Analysis of First Test; (4) Analysis of Second Test; (5) Analysis of Third Test; (6) Analysis of Final Test; (7) Applications of Airborne GPS; and (8) Conclusion and Recommendation.
Resumo:
The characterization and categorization of coarse aggregates for use in portland cement concrete (PCC) pavements is a highly refined process at the Iowa Department of Transportation. Over the past 10 to 15 years, much effort has been directed at pursuing direct testing schemes to supplement or replace existing physical testing schemes. Direct testing refers to the process of directly measuring the chemical and mineralogical properties of an aggregate and then attempting to correlate those measured properties to historical performance information (i.e., field service record). This is in contrast to indirect measurement techniques, which generally attempt to extrapolate the performance of laboratory test specimens to expected field performance. The purpose of this research project was to investigate and refine the use of direct testing methods, such as X-ray analysis techniques and thermal analysis techniques, to categorize carbonate aggregates for use in portland cement concrete. The results of this study indicated that the general testing methods that are currently used to obtain data for estimating service life tend to be very reliable and have good to excellent repeatability. Several changes in the current techniques were recommended to enhance the long-term reliability of the carbonate database. These changes can be summarized as follows: (a) Limits that are more stringent need to be set on the maximum particle size in the samples subjected to testing. This should help to improve the reliability of all three of the test methods studied during this project. (b) X-ray diffraction testing needs to be refined to incorporate the use of an internal standard. This will help to minimize the influence of sample positioning errors and it will also allow for the calculation of the concentration of the various minerals present in the samples. (c) Thermal analysis data needs to be corrected for moisture content and clay content prior to calculating the carbonate content of the sample.
Resumo:
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.