935 resultados para Virus Replication
Resumo:
This article considers the race to sequence the Severe Acute Respiratory Syndrome virus ('the SARS virus') in light of the debate over patent law and access to essential medicines. Part II evaluates the claims of public research institutions in Canada, the United States, and Hong Kong, and commercial companies, to patent rights in respect of the SARS virus. It highlights the dilemma of ’defensive patenting' - the tension between securing private patent rights and facilitating public disclosure of information and research. Part III considers the race to patent the SARS virus in light of wider policy debates over gene patents. It examines the application of such patent criteria as novelty, inventive step, utility, and secret use. It contends that there is a need to reform the patent system to accommodate the global nature of scientific inquiry, the unique nature of genetics, and the pace of technological change. Part IV examines the role played by the World Trade Organization and the World Health Organization in dealing with patent law and access to essential medicines. The article contends that there is a need to ensure that the patent system is sufficiently flexible and adaptable to accommodate international research efforts on infectious diseases.
Resumo:
Objective: To test the association of interleukin 1 (IL1) gene family members with ankylosing spondylitis (AS), previously reported in Europid subjects, in an ethnically remote population. Methods: 200 Taiwanese Chinese AS patients and 200 ethnically matched healthy controls were genotyped for five single nucleotide polymorphisms (SNPs) and the IL1RN.VNTR, markers previously associated with AS. Allele, genotype, and haplotype frequencies were compared between cases and controls. Results: Association of alleles and genotypes of the markers IL1F10.3, IL1RN.4, and IL1RN.VNTR was observed with AS (p<0.05). Haplotypes of pairs of these markers and of the markers IL1RN.6/1 and IL1RN.6/2 were also significantly associated with AS. The strongest associations observed were with the marker IL1RN.4, and with the two-marker haplotype IL1RN.4-IL1RN.VNTR (both p = 0.004). Strong linkage disequilibrium was observed between all marker pairs except those involving IL1B-511 (D′ 0.4 to 0.9, p<0.01). Conclusions: The IL1 gene cluster is associated with AS in Taiwanese Chinese. This finding provides strong statistical support that the previously observed association of this gene cluster with AS is a true positive finding.
Resumo:
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Resumo:
Serum and synovial antibody reactivities of caprine arthritis encephalitis virus (CAEV) infected goats were assessed by Western blotting against purified CAEV antigen and the greatest intensity of reactivity in the serum of arthritic goats was to the gp45 transmembrane protein (TM). The extracytoplasmic domain of the TM gene was cloned into a pGEX vector and expressed in Escherichia coil as a glutathione S transferase fusion protein (GST-TM). This clone was found to be 90.5 and 89.2% homologous to published sequences of CAEV TM gene. Serum of 16 goats naturally infected with CAEV were examined by Western blotting for reactivity to the fusion protein. Antibody reactivity to the GST-TM correlated with clinically detectable arthritis (R = 0.642, P ≤ 0.007). The hypothesis that the immune response to the envelope proteins of the CAEV contributes to the severity of arthritis in goats naturally infected with CAEV via epitope mimicry was tested. Antibodies from 5 CAEV infected goats were affinity purified against the GST-TM fusion protein and tested for cross-reactivity with a series of goat synovial extracts and proteogylcans. No serum antibody response or cross-reactivity of affinity purified antibodies could be detected. Peptides of the CAEV SU that were predicted to be linear epitopes and a similar heat shock protein 83 (HSP) peptide identified by database searching, were synthesized and tested for reactivity in CAEV goats using ELISA, in vitro lymphocyte proliferation and delayed type hypersensitivity (DTH) assays. Peripheral blood lymphocytes from 10 of 17 goats with long term natural CAEV infections proliferated in vitro in response to CAEV and in vivo 3 of 7 CAEV infected goats had a DTH reaction to CAEV antigen. However, none of the peptides elicited significant cell mediated immune responses from CAEV infected goats. No antibody reactivity to the SU peptides or HSP peptide was found. We observed that the antibody reactivity to the CAEV TM protein associated with severity of arthritis however epitope mimicry by the envelope proteins of CAEV is unlikely to be involved.
Resumo:
Epitope mimicry is the theory that an infectious agent such as a virus causes pathological effects via mimicry of host proteins and thus elicits a cross-reactive immune response to host tissues. Weise and Carnegie (1988) found a region of sequence similarity between the pol gene of the Maedi Visna virus (MVV), which induces demyelinating encephalitis in sheep, and myelin basic protein (MBP), which is known to induce experimental allergic encephalitis (EAE) in laboratory animals. In this study, cross-reactions between sera raised in sheep against synthetic peptides of MVV (TGKIPWILLPGR) and 21.5 kDa MBP (SGKVPWLKRPGR) were demonstrated using enzyme-linked immunosorbant assay (ELISA) and thin layer chromatography (TLC) immunoprobing. The antibody responses of MVV-infected sheep were investigated using ELISA against the peptides, and MBP protein, immunoprobing of the peptides on TPC plates and Western blotting against MBP. Slight significant reactions to the 21.5 kDa MBP peptide (P < 0.001) and to a lesser extent sheep MBP (P < 0.004) were detected in ELISA. The MBP peptide evoked stronger responses from more sera than the MVV peptide on immunoprobed TLC plates. On the Western blots, eight of the 23 sheep with Visna had serum reactivity to MBP. This slight reaction to MBP in MVV-infected sheep is of interest because of the immune responses to MBP evident in multiple sclerosis and EAE, but its relevance in Visna is limited since no correlation with disease severity was observed. The cell-mediated immune responses of MVV-infected sheep against similar peptides was assessed. The peptides did not stimulate proliferation of peripheral blood lymphocytes of MVV-infected sheep. Since the MVV peptide was not recognised by antibodies or T lymphocytes from MVV-infected and encephalic sheep, it was concluded that epitope mimicry of this 21.5 kDa MBP peptide by the similar MVV pol peptide was not contributing to the immunopathogenesis of Visna. The slight antibody response to MBP and the MBP peptide can be attributed to by-stander effects of the immunopathology of MVV-induced encephalitis.
Resumo:
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.
Resumo:
Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10-5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10-4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10-9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.
Resumo:
Background and aims. Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts eventually leading to biliary cirrhosis. Recent genetic studies in PSC have identified associations at 2q13, 2q35, 3p21, 4q27, 13q31 and suggestive association at 10p15. The aim of this study was to further characterize and refine the genetic architecture of PSC. Methods. We analyzed previously reported associated SNPs at four of these non-HLA loci and 59 SNPs tagging the IL-2/IL-21 (4q27) and IL2RA (10p15) loci in 992 UK PSC cases and 5162 healthy UK controls. Results. The most associated SNPs identified were rs3197999 (3p21 (MST1), p = 1.9 × 10 -6, OR A vs G = 1.28, 95% CI (1.16-1.42)); rs4147359 (10p15 (IL2RA), p = 2.6 × 10 -4, OR A vs G = 1.20, 95% CI (1.09-1.33)) and rs12511287 (4q27 (IL-2/IL-21), p = 3.0 × 10 -4, OR A vs T = 1.21, 95% CI (1.09-1.35)). In addition, we performed a meta-analysis for selected SNPs using published summary statistics from recent studies. We observed genome-wide significance for rs3197999 (3p21 (MST1), P combined = 3.8 × 10 -12) and rs4147359 (10p15 (IL2RA), P combined = 1.5 × 10 -8). Conclusion. We have for the first time confirmed the association of PSC with genetic variants at 10p15 (IL2RA) locus at genome-wide significance and replicated the associations at MST1 and IL-2/IL-21 loci in a large homogeneous UK population. These results strongly implicate the role of IL-2/IL2RA pathway in PSC and provide further confirmation of MST1 association. © Informa Healthcare.
Resumo:
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Resumo:
Haemagglutinin (HA) and fusion (F) proteins of peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) were purified by immunoaffinity chromatography. The purified proteins were characterized by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Rabbit hyperimmune sera were raised against the purified HA and F proteins and assayed by enzyme-linked immunosorbent assay (ELISA), haemagglutination-inhibition (HAI) and virus neutralization (VN) tests. The immunized animals were challenged with a virulent lapinized (rabbit-adapted) strain of RPV: Both HA and F proteins of PPRV protected rabbits against a lethal challenge with lapinized RPV. As expected, RPV HA and F proteins also conferred a similar protection against the homologous challenge. The postchallenge antibody responses were of a true anamnestic type.
Resumo:
Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.
Resumo:
The cupric and ferric complexes of isonicotinic acid hydrazide (INH) inhibit the DNA synthesis catalysed by avian myeloblastosis virus (AMV) reverse transcriptase. The inhibition was to the extent of 95% by 50 μM of cupric-INH complex and 55% by 100 μM of ferric-INH complex. These complexes have been found to bind preferentially to the enzyme than to the template-primer. Kinetic analysis showed that the cupric-INH complex is a non-competitive inhibitor with respect to dTTP. The time course of inhibition has revealed that the complexes are inhibitory even after the initiation of polynucleotide synthesis. In vivo toxicity studies in 1-day-old chicks have shown that the complexes are not toxic up to a concentration of 500 μg per chick. Infection of the 1-day-old chicks with AMV pretreated with 150 μg of either of the complexes prevented symptoms of leukemia due to virus inactivation.
Resumo:
In Pediatric AIDS Clinical Trials Group 377, antiretroviral therapy-experienced children were randomized to 4 treatment arms that included different combinations of stavudine, lamivudine (3TC), nevirapine (Nvp), nelfinavir (Nfv), and ritonavir (Rtv). Previous treatment with zidovudine (Zdv), didanosine (ddI), or zalcitabine (ddC) was acceptable. Drug resistance ((R)) mutations were assessed before study treatment (baseline) and at virologic failure. Zdv(R), ddI(R), and ddC(R) mutations were detected frequently at baseline but were not associated with virologic failure. Children with drug resistance mutations at baseline had greater reductions in virus load over time than did children who did not. Nvp(R) and 3TC(R) mutations were detected frequently at virologic failure, and Nvp(R) mutations were more common among children receiving 3-drug versus 4-drug Nvp-containing regimens. Children who were maintained on their study regimen after virologic failure accumulated additional Nvp(R) and 3TC(R) mutations plus Rtv(R) and Nfv(R) mutations. However, Rtv(R) and Nfv(R) mutations were detected at unexpectedly low rates.
Resumo:
Abacá mosaic virus (AbaMV) is related to members of the sugarcane mosaic virus subgroup of the genus Potyvirus. The ~2 kb 3′ terminal region of the viral genome was sequenced and, in all areas analysed, found to be most similar to Sugarcane mosaic virus (SCMV) and distinct from Johnsongrass mosaic virus (JGMV), Maize dwarf mosaic virus (MDMV) and Sorghum mosaic virus (SrMV). Cladograms of the 3′ terminal region of the NIb protein, the coat protein core and the 3′ untranslated region showed that AbaMV clustered with SCMV, which was a distinct clade and separate from JGMV, MDMV and SrMV. The N-terminal region of the AbaMV coat protein had a unique amino acid repeat motif different from those previously published for other strains of SCMV. The first experimental transmission of AbaMV from abacá (Musa textilis) to banana (Musa sp.), using the aphid vectors Rhopalosiphum maidis and Aphis gossypii, is reported. Polyclonal antisera for the detection of AbaMV in western blot assays and ELISA were prepared from recombinant coat protein expressed in E. coli. A reverse transcriptase PCR diagnostic assay, with microtitre plate colourimetric detection, was developed to discriminate between AbaMV and Banana bract mosaic virus, another Musa-infecting potyvirus. Sequence data, host reactions and serological relationships indicate that AbaMV should be considered a distinct strain of SCMV, and the strain designation SCMV-Ab is suggested.
Resumo:
Tomato spotted wilt virus (genus Tospovirus) is recorded on chickpea (Cicer arietinum) in Australia for the first time. It caused shoot tip symptoms of wilting, necrosis, bunching and chlorosis, followed by premature death of plants.