905 resultados para Video Surveillance System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation is the final step in a complex pathway through which pathogen-derived peptide fragments can elicit an immune response. For it to occur, peptides must form stable complexes with Major Histocompatibility Complex (MHC) molecules and be presented on the cell surface. Computational predictors of MHC binding are often used within in silico vaccine design pathways. We have previously shown that, paradoxically, most bacterial proteins known experimentally to elicit an immune response in disease models are depleted in peptides predicted to bind to human MHC alleles. The results presented here, derived using software proven through benchmarking to be the most accurate currently available, show that vaccine antigens contain fewer predicted MHC-binding peptides than control bacterial proteins from almost all subcellular locations with the exception of cell wall and some cytoplasmic proteins. This effect is too large to be explained from the undoubted lack of precision of the software or from the amino acid composition of the antigens. Instead, we propose that pathogens have evolved under the influence of the host immune system so that surface proteins are depleted in potential MHC-binding peptides, and suggest that identification of a protein likely to contain a single immuno-dominant epitope is likely to be a productive strategy for vaccine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these 3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple multispectral capture system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is focused on the optimisation of resource utilisation in wireless mobile networks with the consideration of the users’ experienced quality of video streaming services. The study specifically considers the new generation of mobile communication networks, i.e. 4G-LTE, as the main research context. The background study provides an overview of the main properties of the relevant technologies investigated. These include video streaming protocols and networks, video service quality assessment methods, the infrastructure and related functionalities of LTE, and resource allocation algorithms in mobile communication systems. A mathematical model based on an objective and no-reference quality assessment metric for video streaming, namely Pause Intensity, is developed in this work for the evaluation of the continuity of streaming services. The analytical model is verified by extensive simulation and subjective testing on the joint impairment effects of the pause duration and pause frequency. Various types of the video contents and different levels of the impairments have been used in the process of validation tests. It has been shown that Pause Intensity is closely correlated with the subjective quality measurement in terms of the Mean Opinion Score and this correlation property is content independent. Based on the Pause Intensity metric, an optimised resource allocation approach is proposed for the given user requirements, communication system specifications and network performances. This approach concerns both system efficiency and fairness when establishing appropriate resource allocation algorithms, together with the consideration of the correlation between the required and allocated data rates per user. Pause Intensity plays a key role here, representing the required level of Quality of Experience (QoE) to ensure the best balance between system efficiency and fairness. The 3GPP Long Term Evolution (LTE) system is used as the main application environment where the proposed research framework is examined and the results are compared with existing scheduling methods on the achievable fairness, efficiency and correlation. Adaptive video streaming technologies are also investigated and combined with our initiatives on determining the distribution of QoE performance across the network. The resulting scheduling process is controlled through the prioritization of users by considering their perceived quality for the services received. Meanwhile, a trade-off between fairness and efficiency is maintained through an online adjustment of the scheduler’s parameters. Furthermore, Pause Intensity is applied to act as a regulator to realise the rate adaptation function during the end user’s playback of the adaptive streaming service. The adaptive rates under various channel conditions and the shape of the QoE distribution amongst the users for different scheduling policies have been demonstrated in the context of LTE. Finally, the work for interworking between mobile communication system at the macro-cell level and the different deployments of WiFi technologies throughout the macro-cell is presented. A QoEdriven approach is proposed to analyse the offloading mechanism of the user’s data (e.g. video traffic) while the new rate distribution algorithm reshapes the network capacity across the macrocell. The scheduling policy derived is used to regulate the performance of the resource allocation across the fair-efficient spectrum. The associated offloading mechanism can properly control the number of the users within the coverages of the macro-cell base station and each of the WiFi access points involved. The performance of the non-seamless and user-controlled mobile traffic offloading (through the mobile WiFi devices) has been evaluated and compared with that of the standard operator-controlled WiFi hotspots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile WiFi devices are becoming increasingly popular in non-seamless and user-controlled mobile traffic offloading alongside the standard WiFi hotspots. Unlike the operator-controlled hotspots, a mobile WiFi device relies on the capacity of the macro-cell for the data rate allocated to it. This type of devices can help offloading data traffic from the macro-cell base station and serve the end users within a closer range, but will change the pattern of resource distributions operated by the base station. We propose a resource allocation scheme that aims to optimize user quality of experience (QoE) when accessing video services in the environment where traffic offloading is taking place through interworking between a mobile communication system and low range wireless LANs. In this scheme, a rate redistribution algorithm is derived to perform scheduling which is controlled by a no-reference quality assessment metric in order to achieve the desired trade-offs between efficiency and fairness. We show the performance of this algorithm in terms of the distribution of the allocated data rates throughout the macro-cell investigated and the service coverage offered by the WiFi access point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a hybrid TCP/UDP transport, specifically for H.264/AVC encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. When implementing the hybrid approach, we argue that the playback at the receiver often need not be 100% perfect, provided that a certain level of quality is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. This allows use of additional features in the H.264/AVC standard which simultaneously provide an enhanced playback quality, in addition to a reduction in throughput. These benefits are demonstrated through experimental results using a test-bed to emulate the hybrid proposal. We compare the proposed system with other protection methods, such as FEC, and in one case show that for the same bandwidth overhead, FEC is unable to match the performance of the hybrid system in terms of playback quality. Furthermore, we measure the delay associated with our approach, and examine its potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation establishes a novel system for human face learning and recognition based on incremental multilinear Principal Component Analysis (PCA). Most of the existing face recognition systems need training data during the learning process. The system as proposed in this dissertation utilizes an unsupervised or weakly supervised learning approach, in which the learning phase requires a minimal amount of training data. It also overcomes the inability of traditional systems to adapt to the testing phase as the decision process for the newly acquired images continues to rely on that same old training data set. Consequently when a new training set is to be used, the traditional approach will require that the entire eigensystem will have to be generated again. However, as a means to speed up this computational process, the proposed method uses the eigensystem generated from the old training set together with the new images to generate more effectively the new eigensystem in a so-called incremental learning process. In the empirical evaluation phase, there are two key factors that are essential in evaluating the performance of the proposed method: (1) recognition accuracy and (2) computational complexity. In order to establish the most suitable algorithm for this research, a comparative analysis of the best performing methods has been carried out first. The results of the comparative analysis advocated for the initial utilization of the multilinear PCA in our research. As for the consideration of the issue of computational complexity for the subspace update procedure, a novel incremental algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast PCA algorithm, was established. In order to utilize the multilinear PCA in the incremental process, a new unfolding method was developed to affix the newly added data at the end of the previous data. The results of the incremental process based on these two methods were obtained to bear out these new theoretical improvements. Some object tracking results using video images are also provided as another challenging task to prove the soundness of this incremental multilinear learning method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we introduce DeReEs-4v, an algorithm for unsupervised and automatic registration of two video frames captured depth-sensing cameras. DeReEs-4V receives two RGBD video streams from two depth-sensing cameras arbitrary located in an indoor space that share a minimum amount of 25% overlap between their captured scenes. The motivation of this research is to employ multiple depth-sensing cameras to enlarge the field of view and acquire a more complete and accurate 3D information of the environment. A typical way to combine multiple views from different cameras is through manual calibration. However, this process is time-consuming and may require some technical knowledge. Moreover, calibration has to be repeated when the location or position of the cameras change. In this research, we demonstrate how DeReEs-4V registration can be used to find the transformation of the view of one camera with respect to the other at interactive rates. Our algorithm automatically finds the 3D transformation to match the views from two cameras, requires no human interference, and is robust to camera movements while capturing. To validate this approach, a thorough examination of the system performance under different scenarios is presented. The system presented here supports any application that might benefit from the wider field-of-view provided by the combined scene from both cameras, including applications in 3D telepresence, gaming, people tracking, videoconferencing and computer vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Though significant progress has been made through control efforts in recent years, malaria remains a leading cause of morbidity and mortality throughout the world, with 3.2 billion people at risk of developing the disease. Zanzibar is currently pursuing malaria elimination through the Zanzibar Malaria Elimination Program (ZAMEP), and is working toward a goal of no locally acquired malaria cases by 2018. A comprehensive and well functioning malaria surveillance program is central to achieving this goal. Under ZAMEP’s current surveillance strategy, District Malaria Surveillance Officers (DMSOs) respond to malaria case notifications through the reactive case detection (RACD) system. Three malaria screening and treatment strategies are undertaken in response to this system, including household-level (HSaT), focal-level (FSaT), and mass-level (MSaT). Each strategy is triggered by a different case threshold and tests different-sized populations. The aims of this study were to (1) assess the cost effectiveness of three malaria screening and treatment strategies; (2) assess the timeliness and completeness of ZAMEP’s RACD system; (3) and qualitatively explore the roles of DMSOs.

Screening disposition and budget information for 2014 screening and treatment strategies was analyzed to determine prevalence rates in screened populations and the cost effectiveness of each strategy. Prevalence rates within the screened population varied by strategy: 6.1 percent in HSaT, 1.2 percent in FSaT, and 0.9 percent in MSaT. Of the various costing scenarios considering cost per person screened, MSaT was the most cost-effective, with costs ranging from $9.57 to $12.57 per person screened. Of the various costing scenarios considering cost per case detected, HSaT was the most cost-effective, at $385.51 per case detected.

Case data from 2013 through mid-2015 was used to assess the timeliness and completeness of the RACD system. The average number of RACD activities occurring within 48 hours of notification improved slightly between 2013 and the first half of 2015, from 90.7 percent to 93.1 percent. The average percentage of household members screened during RACD also increased over the same time period, from 84 percent in 2013 to 89.9 percent in the first half of 2015.

Interviews with twenty DMSOs were conducted to gain insights into the challenges to malaria elimination both from the health system and the community perspectives. Major themes discussed in the interviews include the need for additional training, inadequate information capture at health facility, resistance to household testing, transportation difficulties, inadequate personnel during the high transmission season, and community misinformation.

Zanzibar is now considered a low transmission setting, making elimination feasible, but also posing new challenges to achieving this goal. The findings of this study provide insight into how surveillance activities can be improved to support the goal of malaria elimination in Zanzibar. Key changes include reevaluating the use of MSaT activities, improving information capture at health facilities, hiring additional DMSOs during the high transmission season, and improving community communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a convolutional neuralnetwork (CNN)-based model for human head pose estimation inlow-resolution multi-modal RGB-D data. We pose the problemas one of classification of human gazing direction. We furtherfine-tune a regressor based on the learned deep classifier. Next wecombine the two models (classification and regression) to estimateapproximate regression confidence. We present state-of-the-artresults in datasets that span the range of high-resolution humanrobot interaction (close up faces plus depth information) data tochallenging low resolution outdoor surveillance data. We buildupon our robust head-pose estimation and further introduce anew visual attention model to recover interaction with theenvironment. Using this probabilistic model, we show thatmany higher level scene understanding like human-human/sceneinteraction detection can be achieved. Our solution runs inreal-time on commercial hardware

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This paper describes a face detection system which goes beyond traditional approaches normally designed for still images. First the video stream context is considered to apply the detector, and therefore, the resulting system is designed taking into consideration a main feature available in a video stream, i.e. temporal coherence. The resulting system builds a feature based model for each detected face, and searches them using various model information in the next frame. The results achieved for video stream processing outperform Rowley-Kanade's and Viola-Jones' solutions providing eye and face data in a reduced time with a notable correct detection rate.