840 resultados para Vehicle-to-Vehicle Communications


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it suboptimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Almost all modern cars can be controlled remotely using a personal communicator (keyfob). However, the degree of interaction between currently available personal communicators and cars is very limited. The communication link is unidirectional and the communication range is limited to a few dozen meters. However, there are many interesting applications that could be supported if a keyfob would be able to support energy efficient bidirectional longer range communication. In this paper we investigate off-the-shelf transceivers in terms of their usability for bidirectional longer range communication. Our evaluation results show that existing transceivers can generally support the required communication ranges but that links tend to be very unreliable. This high unreliability must be handled in an energy efficient way by the keyfob to car communication protocol in order to make off-the-shelf transceivers a viable solution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper addresses the challenging domain of vehicle classification from pole-mounted roadway cameras, specifically from side-profile views. A new public vehicle dataset is made available consisting of over 10000 side profile images (86 make/model and 9 sub-type classes). 5 state-of-the-art classifiers are applied to the dataset, with the best achieving high classification rates of 98.7% for sub-type and 99.7- 99.9% for make and model recognition, confirming the assertion made that single vehicle side profile images can be used for robust classification.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Personalized communication is when the marketing message is adapted to each individual by using information from a databaseand utilizing it in the various, different media channels available today. That gives the marketer the possibility to create a campaign that cuts through today’s clutter of marketing messages and gets the recipients attention. PODi is a non-profit organization that was started with the aim of contributing knowledge in the field of digital printingtechnologies. They have created a database of case studies showing companies that have successfully implemented personalizedcommunication in their marketing campaigns. The purpose of the project was therefore to analyze PODi case studies with the main objective of finding out if/how successfully the PODi-cases have been and what made them so successful. To collect the data found in the PODi cases the authors did a content analysis with a sample size of 140 PODi cases from the year 2008 to 2010. The study was carried out by analyzing the cases' measurable ways of success: response rate, conversion rate, visited PURL (personalized URL:s) and ROI (Return On Investment). In order to find out if there were any relationships to be found between the measurable result and what type of industry, campaign objective and media vehicle that was used in the campaign, the authors put up different research uestions to explore that. After clustering and merging the collected data the results were found to be quite spread but shows that the averages of response rates, visited PURL and conversion rates were consistently very high. In the study the authors also collected and summarized what the companies themselves claim to be the reasons for success with their marketing campaigns. The resultshows that the creation of a personalized campaign is complex and dependent on many different variables. It is for instance ofgreat importance to have a well thought-out plan with the campaign and to have good data and insights about the customer in order to perform creative personalization. It is also important to make it easy for the recipient to reply, to use several media vehicles for multiple touch points and to have an attractive and clever design.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The thesis aims to elaborate on the optimum trigger speed for Vehicle Activated Signs (VAS) and to study the effectiveness of VAS trigger speed on drivers’ behaviour. Vehicle activated signs (VAS) are speed warning signs that are activated by individual vehicle when the driver exceeds a speed threshold. The threshold, which triggers the VAS, is commonly based on a driver speed, and accordingly, is called a trigger speed. At present, the trigger speed activating the VAS is usually set to a constant value and does not consider the fact that an optimal trigger speed might exist. The optimal trigger speed significantly impacts driver behaviour. In order to be able to fulfil the aims of this thesis, systematic vehicle speed data were collected from field experiments that utilized Doppler radar. Further calibration methods for the radar used in the experiment have been developed and evaluated to provide accurate data for the experiment. The calibration method was bidirectional; consisting of data cleaning and data reconstruction. The data cleaning calibration had a superior performance than the calibration based on the reconstructed data. To study the effectiveness of trigger speed on driver behaviour, the collected data were analysed by both descriptive and inferential statistics. Both descriptive and inferential statistics showed that the change in trigger speed had an effect on vehicle mean speed and on vehicle standard deviation of the mean speed. When the trigger speed was set near the speed limit, the standard deviation was high. Therefore, the choice of trigger speed cannot be based solely on the speed limit at the proposed VAS location. The optimal trigger speeds for VAS were not considered in previous studies. As well, the relationship between the trigger value and its consequences under different conditions were not clearly stated. The finding from this thesis is that the optimal trigger speed should be primarily based on lowering the standard deviation rather than lowering the mean speed of vehicles. Furthermore, the optimal trigger speed should be set near the 85th percentile speed, with the goal of lowering the standard deviation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in terms of reduced mean speed and low standard deviation. A comprehen-sive understanding of the effectiveness of the trigger speed of the VAS on driver behaviour was established by systematically collecting data. Specif-ically, data on time of day, speed, length and direction of the vehicle have been collected for the purpose, using Doppler radar installed at the road. A data driven calibration method for the radar used in the experiment has also been developed and evaluated. Results indicate that trigger speed of the VAS had variable effect on driv-ers’ speed at different sites and at different times of the day. It is evident that the optimal trigger speed should be set near the 85th percentile speed, to be able to lower the standard deviation. In the case of battery and solar powered VAS, trigger speeds between the 50th and 85th per-centile offered the best compromise between safety and power consump-tion. Results also indicate that different classes of vehicles report differ-ences in mean speed and standard deviation; on a highway, the mean speed of cars differs slightly from the mean speed of trucks, whereas a significant difference was observed between the classes of vehicles on lo-cal roads. A differential trigger speed was therefore investigated for the sake of completion. A data driven approach using Random forest was found to be appropriate in predicting trigger speeds respective to types of vehicles and traffic conditions. The fact that the predicted trigger speed was found to be consistently around the 85th percentile speed justifies the choice of the automatic model.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper reviews the effectiveness of vehicle activated signs. Vehicle activated signs are being reportedly used in recent years to display dynamic information to road users on an individual basis in order to give a warning or inform about a specific event. Vehicle activated signs are triggered individually by vehicles when a certain criteria is met. An example of such criteria is to trigger a speed limit sign when the driver exceeds a pre-set threshold speed. The preset threshold is usually set to a constant value which is often equal, or relative, to the speed limit on a particular road segment. This review examines in detail the basis for the configuration of the existing sign types in previous studies and explores the relation between the configuration of the sign and their impact on driver behavior and sign efficiency. Most of previous studies showed that these signs have significant impact on driver behavior, traffic safety and traffic efficiency. In most cases the signs deployed have yielded reductions in mean speeds, in speed variation and in longer headways. However most experiments reported within the area were performed with the signs set to a certain static configuration within applicable conditions. Since some of the aforementioned factors are dynamic in nature, it is felt that the configurations of these signs were thus not carefully considered by previous researchers and there is no clear statement in the previous studies describing the relationship between the trigger value and its consequences under different conditions. Bearing in mind that different designs of vehicle activated signs can give a different impact under certain conditions of road, traffic and weather conditions the current work suggests that variable speed thresholds should be considered instead.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Moose (Alces alces) are a keystone herbivore in Maine. Because of the large number of rural roads in Maine, there is a high rate of moose-vehicle collisions (MVCs), which is increasing. On-road encounters with animals resulted in 231 fatalities in the United States in 1999. Because of the fatality of MVCs, it is important to know where they are most likely to occur. I used GIS analysis to estimate where future MVCs would occur, factoring in the variables of land cover suitability for moose, distance from water bodies, locations of past MVCs, and speed limits on the roads. I ran four different analyses, each one weighting the variables equally. I also ran a regression to determine if increasing road speed was associated with the increase in the number of MVCs per length of road. There was not a strong positive relationship between the number of MVCs per length of road and the speed limit, but it was interesting to note that there were more MVCs per length of road on 35mph and 40mph roads than on 45, 50, 55 or 65mph roads. Future research on MVCs would benefit from the inclusion of include moose population density and road traffic data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In a recent study of the microbiological quality of commercial ice, 50 Escherichia coli isolates belonging to different serotypes were found. The potential hazard from these isolates was examined by testing their adherence patterns ill HeLa cells and searching for the presence of DNA sequences related to E. coli virulence properties. Twelve potentially diarrheagenic isolates were found and classified as enteroaggregative E. coli (EAEC) based oil their ability to produce aggregative adherence to HeLa cells. The remaining isolates were devoid of the virulence properties searched for. The EAEC isolates belonged to 10 different serotypes, among which O128ab:H35 is often found in diarrheic feces. None of these isolates reacted with a specific EAEC DNA probe or carried any of the known EAEC virulence genes. These data indicate that ice may be all important vehicle for transmission of enteropathogens, especially of the EAEC group. (C) 2003 Elsevier B.V. All rights reserved.