995 resultados para VASCULAR BIOLOGY
Resumo:
Under laboratory conditions, the development from egg to adult of P. wellcomei takes an average of 42 days. The larval tages are similar to those of P. arthuri, described by barretto (1941), but can be distinguished from this species by the ratio of the first to second antennal segment, by the form of the lateral head seate and prothoracic dorsolateral setae. The pupal stage of P. wellcomei is characterized by a trifid pre-alar seta and simple spine-like thoracic and abdominal setae.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.
Resumo:
Thymulin is a pharmacologically active metallononapeptide inducing the differentiation of T cells and enhancing several functions of the various T cell subsets in normal or partially thymus-deficient recipients. Its effect on suppressor T cells is, so far, the most remarkable and should be the first to find useful clinical applications. The peptide is a natural hormone, available in synthetic form. It is not toxic and one may foresee its clinical use as one of the major immunoregulatory agents in the near future.
Resumo:
Insect vitellogenesis involves coordinated activities of the fat body and oocytes. We have studied these activities at the cellular level in the mosquito. During each vitellogenic cycle, the fat body undergoes three successive stages: 1) proliferation of biosynthetic organelles, 2) vitellogenin synthesis, 3) termination of vitellogenin synthesis and degradation of biosynthetic organelles by lysosomes. Analysis with monoclonal antibodies and radiolabelling demonstrated that the mosquito yolk protein consists of two subunits (200-kDa and 65-kDa). Both subunits are glycosylated, their carbohydrate moieties are composed of high-mannose oligosaccharides. The yolk protein subunits are derived from a single 220 kDa precursor detected by an in vitro translation. Oocytes become competent to internalize proteins as a result of juvenile hormone-mediated biogenesis of endocytotic organelles. The yolk protein is then accumulated by receptor-mediated endocytosis. A pathway of the yold protein and factors determining its routing in the oocyte have been studied.
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.