981 resultados para Uptake kinetics
Resumo:
Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8
Resumo:
The method of the kinetics separation of copper and palladium by sodium hydroxide precipitation was described. The reaction orders, apparent rate constants, apparent activation energy of the reactions between sodium hydroxide and copper, and palladium were determined, and the introduced error for the determination of palladium with separating copper and-palladium by sodium hydroxide precipitation was calculated, The proposed method has been applied to determine palladium in the aldehyde catalyst with good result.
Resumo:
The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n approximate to 2 for both melt and cold crystallization. With the Hoffman-Weeks method, the equilibrium melting point is estimated to be 406 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (K-g) of the isothermal melt and cold crystallization is estimated. In addition, the K-g value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) (PEKEKK) were investigated by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could only describe the primary stage of nonisothermal crystallization kinetics of PEKEKK. Also, the Ozawa equation could not describe its nonisothermal crystallization behavior. A convenient and reasonable kinetic approach was used to describe the nonisothermal crystallization behavior. The crystallization activation energy were estimated to be -264 and 370 KJ/mol for nonisothermal melt and cold crystallization by the Kissinger method. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(beta-hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small-angle X-ray scattering (SAXS). As the PMA content increases in the blends, the glass-transition temperature and cold-crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium-melting-point depression, is -0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PRE. The radial growth rates of spherulites were analyzed with the Lauritzen-Hoffman model. The spherulites of PHB were volume-filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
The nonisothermal crystallization behavior of ethylene terephthalate-ethylene oxide segmented copolymers has been studied by means of differential scanning calorimetry (DSC). The kinetics of ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed by the Ozawa equation. During the crystallization of the high-T-m segments (PET), the low-T-m segments (PEO) act as a noncrystalline diluent, the crystallization behavior of PET obeys the Ozawa theory. When the PEO segments begin to crystallize, the PET phase is always partially solidified and the presence of the spherulitic microstructure of PET profoundly influences the crystallization behavior, which results in that the overall crystallization process does not obey the Ozawa equation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.
Resumo:
The crystallization behavior of PHBV, poly(beta -hydroxybutyrate-co-beta -hydrxyvalerate), with nucleating agents under isothermal conditions was investigated. A differential scanning calorimeter was used to monitor the crystallization process from the melt. During isothermal crystallization, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of BN and Tale causes a considerable increase in the overall crystallization rate of PHBV but does not influence the Avrami exponent n, mechanism of nucleation and spherulite growth mode of PHBV. A little of nucleating agent will increase the crystallization rate and decrease the fold surface free energy sigma (e), remarkably. The effect of BN is more significant than that of Talc.
Resumo:
The nonisothermal crystallization behavior of polyethylene oxide (PEO) in poly(ethylene terephthalate)poly(ethylene oxide) (PETPEO) segmented copolymer and PEO homopolymer has been studied by means of differential scanning calorimetry, as well as transmission electron microscope. The kinetics of PEO in copolymer and PEO homopolymer under nonisothermal crystallization condition has been analyzed by Ozawa equation. The results show that Ozawa equation only describes the crystallization behavior of PEO-6000 homopolymer successfully, but fails to describe the whole crystallization process of PEO in copolymer because the secondary crystallization in the later stage could not be neglected. Due to the constraint of PET segments imposed on the PEO segments, a distinct two stage of crystallization of PEO in copolymer has been investigated by using Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. In the case of PEO-6000 homopolymer, good linear relation for the whole crystallization process is obtained owing to the secondary crystallization does not occur under our experimental condition. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The nonisothermal crystallization behavior of Ethylene Terephthalate-Ethylene Oxide (ET-EO) segmented copolymers has been studied with the use of differential scanning calorimetry (DSC). The kinetics of PEO in ET-EO segmented copolymer under nonisothermal crystallization conditions has been analyzed with the Ozawa equation. The results show that there is no agreement with Ozawa's theoretical predictions in the whole crystallization process owing to the constraint of ET segments imposed on the EO segments. A distinct two-crystallization process has been investigated by using the Avrami equation modified by Jeziorny to deal with the nonisothermal crystallization data. The value of the Avrami exponent n is independent of the length of soft segments. However, the crystallization rate is sensitive to the length of soft segments. The longer the soft segments, the faster the crystallization will be.