881 resultados para Unit root test
Resumo:
The ""Short Cognitive Performance Test"" (Syndrom Kurztest, SKT) is a cognitive screening battery designed to detect memory and attention deficits. The aim of this study was to evaluate the diagnostic accuracy of the SKT as a screening tool for mild cognitive impairment (MCI) and dementia. A total of 46 patients with Alzheimer`s disease (AD), 82 with MCI, and 56 healthy controls were included in the study. Patients and controls were allocated into two groups according to educational level (< 8 years or > 8 years). ROC analyses suggested that the SKT adequately discriminates AD from non-demented subjects (MCI and controls), irrespective of the education group. The test had good sensitivity to discriminate MCI from unimpaired controls in the sub-sample of individuals with more than 8 years of schooling. Our findings suggest that the SKT is a good screening test for cognitive impairment and dementia. However, test results must be interpreted with caution when administered to less-educated individuals.
Resumo:
The objective of this study was to propose an alternative method (MAOD(ALT)) to estimate the maximal accumulated oxygen deficit (MAOD) using only one supramaximal exhaustive test. Nine participants performed the following tests: (a) a maximal incremental exercise test, (b) six submaximal constant workload tests, and (c) a supramaximal constant workload test. Traditional MAOD was determined by calculating the difference between predicted O(2) demand and accumulated O(2) uptake during the supramaximal test. MAOD(ALT) was established by summing the fast component of excess post-exercise oxygen consumption and the O(2) equivalent for energy provided by blood lactate accumulation, both of which were measured during the supramaximal test. There was no significant difference between MAOD (2.82 +/- 0.45 L) and MAOD(ALT) (2.77 +/- 0.37 L) (p = 0.60). The correlation between MAOD and MAOD(ALT) was also high (r = 0.78; p = 0.014). These data indicate that the MAOD(ALT) can be used to estimate the MAOD.
Resumo:
This study compared measurements of upper body aerobic fitness in elite (EC; n = 7) and intermediate rock climbers (IC; n = 7), and a control group (C; n = 7). Subjects underwent an upper limb incremental test on hand cycle ergometer, with increments of 23 W.min(-1), until exhaustion. Ventilation (VE) data were smoothed to 10 s averages and plotted against time for the visual determination of the first (VT1) and second (VT2) ventilatory thresholds. Peak power output was not different among groups [EC = 130.9 (+/- 11.8) W; IC = 122.1 (+/- 28.4) W; C = 115.4 (+/- 15.1) W], but time to exhaustion was significantly higher in EC than IC and C. VO(2PEAK) was significantly higher in EC [36.8 (+/- 5.7) mL.kg(-1).min(-1)] and IC [35.5 (+/- 5.2) mL.kg(-1).min(-1)] than C [28.8 (+/- 5.0) mL.kg(-1).min(-1)], but there was no difference between EC and IC. VT1 was significantly higher in EC than C [EC = 69.0 (+/- 9.4) W; IC = 62.4 (+/- 13.0) W; C = 52.1 (+/- 11.8) W], but no significant difference was observed in VT2 [EC = 103.5 (+/- 18.8) W; IC = 92.0 (+/- 22.0) W; C = 85.6 (+/- 19.7) W]. These results show that elite indoor rock climbers elicit higher aerobic fitness profile than control subjects when measured with an upper body test.
Resumo:
Miarka, B, Del Vecchio, FB, and Franchini, E. Acute effects and postactivation potentiation in the special judo fitness test. J Strength Cond Res 25(2): 427-431, 2011-The purpose of this study was to compare the acute short-term effects of (1) plyometric exercise, (2) combined strength and plyometric exercise (contrast), and (3) maximum strength performance in the Special Judo Fitness Test (SJFT). Eight male judo athletes (mean +/- SD, age, 19 +/- 1 years; body mass, 60.4 +/- 5 kg; height, 168.3 +/- 5.4 cm) took part in this study. Four different sessions were completed; each session had 1 type of intervention: (a) SJFT control, (b) plyometric exercises + SJFT, (c) maximum strength + SJFT, and (d) contrast + SJFT. The following variables were quantified: throws performed during series A, B, and C; total number of throws; heart rate immediately and 1 minute after the test; and test index. Significant differences were found in the number of throws during series A: the plyometric exercise (6.4 +/- 0.5 throws) was superior (p < 0.05) to the control condition (5.6 +/- 0.5 throws). Heart rate 1 minute after the SJFT was higher (p < 0.01) during the plyometric exercise (192 +/- 8 bpm) than during the contrast exercise (184 +/- 9 bpm). The contrast exercise (13.58 +/- 0.72) resulted in better index values than the control (14.67 +/- 1.30) and plyometric exercises (14.51 +/- 0.54). Thus, this study suggests that contrast and plyometric exercises performed before the SJFT can result in improvements in the test index and anaerobic power of judo athletes, respectively.
Resumo:
Background and Study Aim: Judo is very physiological demanding sport, but there are no many physical fitness specific tests. One of the most used specific judo tests is the Special Judo Fitness Test (SJFT) proposed by Sterkowicz ( 1995). Although this test has been used by many coaches in different countries no classificatory table was found to classify the judo athletes according to their results. Thus, the aim of this work was to present a classificatory table for this test. Material/Methods: For this purpose 141 judo athletes ( mean +/-standard deviation: 21.3+/-4.5years-old; 74.2+/-15.9 kg of body mass and 176.7+/-8.2 cm of height; judo ranking between 3(rd) kyu and 3(rd) dan) familiarized with the SJFT performed it once in order to provide data to establish a classificatory table. Results: After the analysis of data distribution a five scale table (20% for each classificatory category) was developed considering the variables used in the SJFT ( number of throws, heart rate after and 1 min after the test and index). Conclusions: The classificatory table can help coaches using the SJFT to classify their athletes` level and to monitor their physical fitness progress.
Resumo:
We analyzed the usefulness of a semi-tethered field running test (STR) and the relationships between indices of anaerobic power, anaerobic capacity and running performance in 9 trained male sprinters (22.2 +/- 2.9 yrs, 176 +/- 1 cm, 68.0 +/- 9.4 kg). STR involved an all out 120 m run attached to an apparatus that enabled power calculation from force and velocity measures. Subjects also carried out a cycloergometer Win-gate Anaerobic Test (WT), an all out 300 m run and had accessed their maximal accumulated oxygen deficit (MAOD) on a treadmill. Peak and mean powers attained in STR (1 720 +/- 221 and 1 391 +/- 201 W) were greater but significantly related (r=0.82; P<0.01) to those in the WT (808 +/- 130 and 603 +/- 87 W). In addition, power measures derived from the STR were stronger related to running performance compared to those from the WT (r=0.81-0.94 vs. 0.68-0.84; P<0.05). Relationships between MAOD and most power indices were only weak to moderate. These results support the usefulness of STR for specific power assessment in field running and suggest that anaerobic power and capacity are not related entities, irrespective of having been evaluated using similar or dissimilar exercise modes.
Resumo:
A bifilar Bi-2212 bulk coil with parallel shunt resistor was tested under fault current condition using a 3 MVA single-phase transformer in a 220 V-60 Hz line achieving fault current peak of 8 kA. The fault current tests are performed from steady state peak current of 200 A by applying controlled short circuits up to 8 kA varying the time period from one to six cycles. The test results show the function of the shunt resistor providing homogeneous quench behavior of the HTS coil besides its intrinsic stabilizing role. The limiting current ratio achieves a factor 4.2 during 5 cycles without any degradation.
Resumo:
A modular superconducting fault current limiter (SFCL) consisting of 16 elements was constructed and tested in a 220 V line for a fault current between 1 kA to 7.4 kA. The elements are made up of second generation (2G) YBCO-coated conductor tapes with stainless steel reinforcement. For each element four tapes were electrically connected in parallel with effective length of 0.4 m per element, totaling 16 elements connected in series. The evaluation of SFCL performance was carried out under DC and AC tests. The DC test was performed through pulsed current tests and its recovery characteristics under load current were analysed by changing the shunt resistor value. The AC test performed using a 3 MVA/220 V/60 Hz transformer has shown the current limiting ratio achieved a factor higher than 10 during fault of up to five cycles without conductor degradation. The measurement of the voltage for each element during the AC test showed that in this modular SFCL the quench is homogeneous and the transition occurs similarly in all the elements.
Resumo:
Several high temperature superconductor (HTS) tapes have been developed since the late eighties. Due to the new techniques applied for their production, HTS tapes are becoming feasible and practical for many applications. In this work, we present the test results of five commercial HTS tapes from the BSCCO and YBCO families (short samples of 200 mm). We have measured and analyzed their intrinsic and extrinsic properties and compared their behaviors for fault current limiter (FCL) applications. Electrical measurements were performed to determine the critical current and the n value through the V-I relationship under DC and AC magnetic fields. The resistance per unit length was determined as a function of temperature. The magnetic characteristics were analyzed through susceptibility curves as a function of temperature. As transport current generates a magnetic field surrounding the HTS material, the magnetic measurements indicate the magnetic field supported by the tapes under a peak current 1.5 times higher than the critical current, I(c). By pulsed current tests the recovery time and the energy/volume during a current fault were also analyzed. These results are in agreement with the data found in the literature giving the most appropriate performance conductor for a FCL device (I(peak) = 4 kA) to be used in a 220 V-60 Hz grid.
Resumo:
Purpose Adverse drug events (ADEs) are harmful and occur with alarming frequency in critically ill patients. Complex pharmacotherapy with multiple medications increases the probability of a drug interaction (DI) and ADEs in patients in intensive care units (ICUs). The objective of the study is to determine the frequency of ADEs among patients in the ICU of a university hospital and the drugs implicated. Also, factors associated with ADEs are investigated. Methods This cross-sectional study investigated 299 medical records of patients hospitalized for 5 or more days in an ICU. ADEs were identified through intensive monitoring adopted in hospital pharmacovigilance and also ADE triggers. Adverse drug reactions (ADR) causality was classified using the Naranjo algorithm. Data were analyzed through descriptive analysis, and through univariate and multiple logistic regression. Results The most frequent ADEs were ADRs type A, of possible causality and moderate severity. The most frequent ADR was drug-induced acute kidney injury. Patients with ADEs related to DIs corresponded to 7% of the sample. The multiple logistic regression showed that length of hospitalization (OR = 1.06) and administration of cardiovascular drugs (OR = 2.2) were associated with the occurrence of ADEs. Conclusion Adverse drug reactions of clinical significance were the most frequent ADEs in the ICU studied, which reduces patient safety. The number of ADEs related to drug interactions was small, suggesting that clinical manifestations of drug interactions that harm patients are not frequent in ICUs.
Resumo:
There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.
Resumo:
Wetting balance tests of copper sheets submerged in tin solder baths were carried out in a completely automatic wetting balance. Wetting curves were examined for three different values of sheet thickness and four different solder bath temperatures. Most of the wetting curves showed a distorted shape relative to that of a standard curve, preventing calculation of important wetting parameters, such as the wetting rate and the wetting force. The wetting tests showed that the distortion increased for a thicker sheet thickness and a lower solder bath temperature, being the result of solder bath solidification around the submerged sheet substrate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A great deal of works has been developed on the spar vortex-induced motion (VIM) issue. There are, however, very few published works concerning VIM of monocolumn platforms, partly due to the fact that the concept is fairly recent and the first unit was only installed last year. In this context, a meticulous study on VIM for this type of platform concept is presented here. Model test experiments were performed to check the influence of many factors on VIM, such as different headings, wave/current coexistence, different drafts, suppression elements, and the presence of risers. The results of the experiments presented here are motion amplitudes in both in-line and transverse directions, forces and added-mass coefficients, ratios of actual oscillation and natural periods, and motions in the XY plane. This is, therefore, a very extensive and important data set for comparisons and validations of theoretical and numerical models for VIM prediction. [DOI: 10.1115/1.4001440]
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.
Resumo:
Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The model implicitly incorporates the effect of simultaneous pressure head and osmotic head on root water uptake, and does not require additional assumptions (additive or multiplicative) to derive the combined effect of water and salt stress. Simulation results showed that relative transpiration equals relative matric flux potential, which is defined as the matric flux potential calculated with an osmotic pressure head-dependent lower bound of integration, divided by the matric flux potential at the onset of limiting hydraulic conditions. In the falling rate phase, the osmotic head near the root surface was shown to increase in time due to decreasing root water extraction rates, causing a more gradual decline of relative transpiration than with water stress alone. Results furthermore show that osmotic stress effects on uptake depend on pressure head or water content, allowing a refinement of the approach in which fixed reduction factors based on the electrical conductivity of the saturated soil solution extract are used. One of the consequences is that osmotic stress is predicted to occur in situations not predicted by the saturation extract analysis approach. It is also shown that this way of combining salinity and water as stressors yields results that are different from a purely multiplicative approach. An analytical steady state solution is presented to calculate the solute content at the root surface, and compared with the outputs of the numerical model. Using the analytical solution, a method has been developed to estimate relative transpiration as a function of system parameters, which are often already used in vadose zone models: potential transpiration rate, root length density, minimum root surface pressure head, and soil theta-h and K-h functions.