894 resultados para Unified Model Reference


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 µGal for 2003 and 3.5 µGal for 2005. The resulting time-lapse uncertainty is 5.3 µGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530kg/m**3. Uncertainty in determining the average density is estimated to be ±65 kg/m**3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid carbon input into the ocean-atmosphere system caused a dramatic shoaling of the lysocline during the Paleocene-Eocene thermal maximum (PETM), a transient (~170 kyr) global warming event that occurred roughly 55 Ma. Carbon cycle models invoking an accelerated carbonate-silicate feedback mechanism to neutralize ocean acidification predict that the lysocline would subsequently deepen to depths below its original position as the marine carbonate system recovered from such a perturbation. To test this hypothesis, records of carbonate sedimentation and preservation for PETM sections in the Weddell Sea (ODP Site 690) and along the Walvis Ridge depth transect (ODP Sites 1262, 1263, and 1266) were assembled within the context of a unified chronostratigraphy. The meridional gradient of undersaturation delimited by these records shows that dissolution was more severe in the subtropical South Atlantic than in the Weddell Sea during the PETM, a spatiotemporal pattern inconsistent with the view that Atlantic overturning circulation underwent a transient reversal. Deepening of the lysocline following its initial ascent is signaled by increases in %CaCO3 and coarse-fraction content at all sites. Carbonate preservation during the recovery period is appreciably better than that seen prior to carbon input with carbonate sedimentation becoming remarkably uniform over a broad spectrum of geographic and bathymetric settings. These congruent patterns of carbonate sedimentation confirm that the lysocline was suppressed below the depth it occupied prior to carbon input, and are consistent with the view that an accelerated carbonate-silicate geochemical cycle played an important role in arresting PETM conditions.