959 resultados para UV-Visible absorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology, the science of minuscule, has developed products which are able t o manipulate atoms and molecules that could be applied in the sterilization process of dental instruments. Objetives: The objective of the present study was to evaluate the self-cleaning action of TiO2 and Ag nanoparticles coating on dental instruments by the photocataliys process under UV and visible light irradiation. Material and method: Microbiologic tests were done using dental cement spatulas coated with TiO2 and Ag nanoparticles (one or three layers), and contaminated with 10 mcrl of Pseudomonas aeruginosa and Enterococcus faecalis, respectively. After contamination, they were exposed to ultraviolet light and visible light for 120 minutes. Next, they were transferred to and stored in test tubes with BHI (Brain Heart Infusion) and incubated in 35 to 37 °C. Checking times for bacterial growth and for control and retrieval tests were done at: 24, 48, 72 and 96 hours. Result: The Pseudomonas aeruginosa was inactive after 120 minutes of ultraviolet light irradiation, thus confirming the heterogeneous photocatalytic activity of TiO2 and Ag. The Pseudomonas aeruginosa was not inactivated under visible light irradiation and the Enterococcus faecalis was not inactivated under UV and visible light irradiation of the dental cement spatulas coated with TiO2 and Ag nanoparticles in the readings to 96 hours, showing bacterial growth. Conclusion: There were no influence of one or three layers of TiO2 and Ag nanoparticles coating of the spatulas in the results. The heterogeneous photocatalysis activity of TiO2 and Ag under UV light irradiation was confirmed for Pseudomonas aeruginosa but not under visible light. Enterococcus faecalis did not confirmed the photocatalytics activity of TiO2 and Ag under UV light irradiation and visible lights irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IR-visible upconversion fluorescence spectroscopy and thermal effects in pr(3+)/Yb3+-codoped Ga2O3:La2S3 chalcogenide glasses excited at 1.064 mum is reported. Intense visible upconversion emission in the wavelength region of 480-680 nm peaked around 500, 550, 620 and 660 nm is observed. Upconversion excitation of the Pr3+ excited-state visible emitting levels is achieved by st combination of phonon-assisted absorption, energy-transfer and phonon-assisted excited-state absorption processes. A threefold upconversion emission enhancement induced by thermal effects when the codoped sample was heated in the temperature range of 20-200 degreesC is demonstrated. The thermal-induced enhancement is attributed to a multiphonon-assisted anti-Stokes process which takes place in the excitation of the ytterbium and excited-state absorption of the praseodymium. The thermal effect is modelled by conventional rate equations considering temperature-dependent effective absorption cross-sections for the F-2(7/2)-F-2(5/2) ytterbium transition and (1)G(4)-P-3(0) praseadymium excited-state absorption, and it is shown to agree very well with experimental results. Frequency upconversion in singly Pr3+-doped samples pumped at 836 nm and 1.064 mum in a two-beam configuration is also examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sol-gel process has facilitated the processing of Organic-Inorganic Hybrid Materials with several scientific applications and technologies. The hybrid combine the advantages of the Sol-gel process with specific characteristics of organic polymers, allowing processing of thin films without fractures or fissures. The incorporation of azo dyes in polymer matrices has been widely used in the investigation of optical properties. The azo dye Disperse Red (DR1) presents optical alterations when exposed to visible or ultraviolet light. The alterations occur due to transitions of their isomers, trans and cis, caused by photoisomerization, due to electronic transitions of azo group (-N=N-), presenting photochromic and/or photorefractive effects. The hybrid system used in this work is the precursor 3- Glycidoxypropyl-Trimethoxi-silane (GPTS), the Tetraethylorthosilicate (TEOS) and DR1 as a dopant. The characterizations were performed using absorption spectroscopy UV-Vis which allowed the identification of the absorption bands and its variations when the samples were treated thermally and/or illuminated by ultraviolet light

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium azumolene is a drug designed to fight Malignant Hyperthermia (MH), which is characterized by genetic predisposition and triggered by the use of inhalational anesthetics. This drug is shown as a water-soluble analogue of dantrolene sodium, 30-folds more water soluble, which gives advantages for its emergency use. To our knowledge there is no analytical method for sodium zaumolene raw material or dosage form published so far. The objective of the present investigation was to develop and validate analytical methods to achieve sodium azumolene chemical identification and quantification. The sodium azumolene was characterized regarding its thermal behavior, by differential thermal analysis and thermogravimetric analysis; Visible, UV and infrared absorption. To accurately assess the sodium Azumolene content three different analytical methods (visible and UV spectrophotometry and high performance liquid chromatography) were developed and validated. All methods showed to be linear, accurate, precise and reliable. Azumolene has shown to be equipotent to dantrolene in the treatment and prevention of an MH crisis and the great advantage compared to dantrolene is better water solubility. This study has characterized the sodium azumolene and presents new analytical methods which have not been reported so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light pollution due to exterior lighting is a rising concern. While glare, light trespass and general light pollution have been well described, there are few reported studies on the impact of light pollution on insects. By studying insect behavior in relation to artificial lighting, we suggest that control of the UV component of artificial lighting can significantly reduce its attractiveness, offering a strong ability to control the impact on insects. Traditionally, the attractiveness of a lamp to insects is calculated using the luminous efficiency spectrum of insect rhodopsin. This has enabled the development of lamps that emit radiation with wavelengths that are less visible to insects (that is, yellow lamps). We tested the assumption that the degree of visibility of a lamp to insects can predict its attractiveness by means of experimental collections. We found that the expected lamp's visibility is indeed related to the extent to which it attracts insects. However, the number of insects attracted to a lamp is disproportionally affected by the emission of ultraviolet radiation. UV triggers the behavior of approaching lights more or less independently of the amount of UV radiation emitted. Thus, even small amounts of UV should be controlled in order to develop bug-free lamps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground state interactions and excited states and transients formed after photolysis and photosensitization of 2-ethylaminodiphenylborinate (2APB) were studied by various techniques. The UV spectrum shows a large absorption band at 235 nm (epsilon = 14,500 M-1 cm(-1)) with a shoulder at 260 nm. The fluorescence spectra show increasing emission intensity with maximum at 300 nm, which shifts to the red up to 10(-3) M concentrations. At higher concentrations, the emission intensity decreases, probably due to the formation of aggregates. UV excitation in deareated solutions shows the formation of two transients at 300 and 360 nm. The latter has a lifetime of 5.7 mu s in ethanol and is totally quenched in the presence of oxygen and assigned to the triplet state of 2APB. The 300 nm peak is not affected by oxygen, has a lifetime in the order of milliseconds, and corresponds to a boron-centered radical species originated from the singlet state. A boron radical can also be obtained by electron transfer from triplet Safranine to the borinate (k(q) = 9.7 x 10(7) M-1 s(-1)) forming the semioxidized form of the dye. EPR experiments using DMPO show that dye-sensitized and direct UV-photolysis of 2ABP renders initially arylboron-centered radicals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IDENTIFICATION OF ETHANOLIC WOOD EXTRACTS USING ELECTRONIC ABSORPTION SPECTRUM AND MULTIVARIATE ANALYSIS. The application of multivariate analysis to spectrophotometric (UV) data was explored for distinguishing extracts of cachaca woods commonly used in the manufacture of casks for aging cachacas (oak, cabretiva-parda, jatoba, amendoim and canela-sassafras). Absorbances close to 280 nm were more strongly correlated with oak and jatoba woods, whereas absorbances near 230 nm were more correlated with canela-sassafras and cabretiva-parda. A comparison between the spectrophotometric model and the model based on chromatographic (HPLC-DAD) data was carried out. The spectrophotometric model better explained the variance data (PC1 + PC2 = 91%) exhibiting potential as a routine method for checking aged spirits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

gamma Cas is the prototypical classical Be star and is recently best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around four XMM-Newton observations. The observational techniques included long baseline optical interferometry (LBOI) from two instruments at CHARA, photometry carried out by an automated photometric telescope and H alpha observations. Because gamma Cas is also known to be in a binary, we measured radial velocities from the H alpha line and redetermined its period as 203.55 +/- 0.20 days and its eccentricity as near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an system inclination angle near 45 degrees, and a larger radius than previously reported. In addition, the Be star began an "outburst" at the beginning of our campaign, made visible by a brightening and reddening of the disk during our campaign and beyond. Our analyses of the new high resolution spectra disclosed many attributes also found from spectra obtained in 2001 (Chandra) and 2004 (XMM-Newton). As well as a dominant hot (approximate to 14 keV) thermal component, the familiar attributes included: (i) a fluorescent feature of Fe K even stronger than observed at previous times; (ii) strong lines of N VII and Ne XI lines indicative of overabundances; and (iii) a subsolar Fe abundance from K-shell lines but a solar abundance from L-shell ions. We also found that two absorption columns are required to fit the continuum. While the first one maintained its historical average of 1 x 10(21) cm(-2), the second was very large and doubled to 7.4 x 10(23) cm(-2) during our X-ray observations. Although we found no clear relation between this column density and orbital phase, it correlates well with the disk brightening and reddening both in the 2010 and earlier observations. Thus, the inference from this study is that much (perhaps all?) of the X-ray emission from this source originates behind matter ejected by gamma Cas into our line of sight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (alpha-Ag2WO4) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these alpha-Ag2WO4 microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that alpha-Ag2WO4 microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L-3-edge showed distorted octahedral [WO6] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the alpha-Ag2WO4 microcrystals grow by aggregation and the Ostwald ripening process. PL properties of alpha-Ag2WO4 microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like alpha-Ag2WO4 microcrystals prepared by the SC method exhibited a major PL emission intensity relative to alpha-Ag2WO4 microcrystals prepared by the CP and CH methods.