800 resultados para Twisted affine superalgebras
Resumo:
Trattazione sulla superficie quadrica rigata nel proiettivo, con cenni sulle quadriche in generale nello spazio affine e proiettivo e sull'unicità della superficie quadrica liscia nello spazio proiettivo complesso. Descrizione della quadrica rigata tramite la Mappa di Segre e tramite la proiezione da un suo punto su di un piano, studio di come ricavare tale quadrica da un piano e descrizione delle curve su di essa.
Resumo:
Si è interessati a classificare le cubiche del piano proiettivo complesso. In particolare vengono classificate le cubiche piane dimostrando che ogni cubica non singolare è proiettivamente equivalente a una cubica di equazione affine nota e che esistono infinite classi di equivalenza proiettiva per le cubiche piane non singolari. Si mostra inoltre che le cubiche piane singolari irriducibili possono essere ricondotte a due classi di equivalenza proiettive: la prima classe contiene le cubiche con un nodo, la seconda classe contiene invece le cubiche con una cuspide. Infine si studiano le proiezioni piane della cubica gobba da un suo punto, oppure da un punto esterno alla cubica.
Resumo:
La tesi è dedicata allo studio delle rappresentazioni delle algebre di Lie semisemplici su un campo algebricamente chiuso di caratteristica zero. Mediante il teorema di Weyl sulla completa riducibilità, ogni rappresentazione di dimensione finita di una algebra di Lie semisemplice è scrivibile come somma diretta di sottorappresentazioni irriducibili. Questo permette di poter concentrare l'attenzione sullo studio delle rappresentazioni irriducibili. Inoltre, mediante il ricorso all'algebra inviluppante universale si ottiene che ogni rappresentazione irriducibile è una rappresentazione di peso più alto. Perciò è naturale chiedersi quando una rappresentazione di peso più alto sia di dimensione finita ottenendo che condizione necessaria e sufficiente perché una rappresentazione di peso più alto sia di dimensione finita è che il peso più alto sia dominante. Immediata è quindi l'applicazione della teoria delle rappresentazioni delle algebre di Lie semisemplici nello studio delle superalgebre di Lie, in quanto costituite da un'algebra di Lie e da una sua rappresentazione, dove viene utilizzata la tecnica della Z-graduazione che viene utilizzata per la prima volta da Victor Kac nello studio delle algebre di Lie di dimensione infinita nell'articolo ''Simple irreducible graded Lie algebras of finite growth'' del 1968.
Resumo:
L’obiettivo di questa tesi è costruire una corrispondenza tra oggetti algebrici, gli ideali, e oggetti geometrici, le varietà algebriche, e studiarne il comportamento nel caso affine e proiettivo. Nel caso affine, lavorando in campi algebricamente chiusi, si descrive una corrispondenza biunivoca tra ideali radicali e varietà affini non vuote. Ciò permette di riformulare ogni affermazione sulle varietà affini in un’affermazione sugli ideali radicali, e viceversa; in particolare si descrivono le relazioni tra le operazioni su ideali e su varietà: alla somma degli ideali corrisponde l’intersezione di varietà, a prodotto e intersezione di ideali corrisponde l’unione di varietà, al quoziente di ideali corrisponde la chiusura di Zariski della differenza insiemistica delle varietà. Inoltre ad ogni ideale primo corrisponde una varietà irriducibile e agli ideali massimali corrispondono i punti dello spazio. Nel caso proiettivo invece, si considerano ideali omogenei e varietà proiettive, definite da polinomi omogenei. Restringendosi a campi algebricamente chiusi, si ha una corrispondenza biunivoca tra varietà proiettive non vuote e ideali radicali omogenei contenuti in un particolare ideale, (x_0,…,x_n). Con queste restrizioni la corrispondenza tra le operazioni algebriche e geometriche è la stessa studiata nel caso affine. Infine si introduce la chiusura proiettiva di una varietà affine, che è la più piccola varietà proiettiva che contiene una varietà affine data.
Resumo:
Il disegno del verde acquisisce un ruolo imprescindibile nell’intera area soggetta a studio. Se in prossimità delle zone edificate di progetto esso assume una dialettica propria, derivata dallo studio dei tracciati urbani sopra citati, in adiacenza di Via Carlo Tosi, prospiciente all’ospedale San Carlo, va ad assumere un carattere affine alla griglia ortogonale sopra descritta, rispondendo non più alle giaciture del costruito esistente ma all’inclinazione dei campi risalenti al 1878, epoca a cui corrisponde la carta di Manovra.
Resumo:
In questa tesi introdurremo la topologia di Zariski sullo spazio affine n-dimensionale. Ne mostreremo alcune proprietà e arriveremo a dimostrare che ogni insieme algebrico è esprimibile come unione finita di varietà.
Resumo:
Among clinically relevant somatostatin functions, agonist-induced somatostatin receptor subtype 2 (sst(2)) internalization is a potent mechanism for tumor targeting with sst(2) affine radioligands such as octreotide. Since, as opposed to octreotide, the second generation multi-somatostatin analog SOM230 (pasireotide) exhibits strong functional selectivity, it appeared of interest to evaluate its ability to affect sst(2) internalization in vivo. Rats bearing AR42J tumors endogenously expressing somatostatin sst(2) receptors were injected intravenously with SOM230 or with the [Tyr(3), Thr(8)]-octreotide (TATE) analog; they were euthanized at various time points; tumors and pancreas were analyzed by immunohistochemistry for the cellular localization of somatostatin sst(2) receptors. SOM230-induced sst(2) internalization was also evaluated in vitro by immunofluorescence microscopy in AR42J cells. At difference to the efficient in vivo sst(2) internalization triggered by intravenous [Tyr(3), Thr(8)]-octreotide, intravenous SOM230 did not elicit sst(2) internalization: immunohistochemically stained sst(2) in AR42J tumor cells and pancreatic cells were detectable at the cell surface at 2.5min, 10min, 1h, 6h, or 24h after SOM230 injection while sst(2) were found intracellularly after [Tyr(3), Thr(8)]-octreotide injection. The inability of stimulating sst(2) internalization by SOM230 was confirmed in vitro in AR42J cells by immunofluorescence microscopy. Furthermore, SOM230 was unable to antagonize agonist-induced sst(2) internalization, neither in vivo, nor in vitro. Therefore, SOM230 does not induce sst(2) internalization in vivo or in vitro in AR42J cells and pancreas, at difference to octreotide derivatives with comparable sst(2) binding affinities. These characteristics may point towards different tumor targeting but also to different desensitization properties of clinically applied SOM230.
Resumo:
The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.
Resumo:
Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.
Resumo:
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
Resumo:
Locally affine (polyaffine) image registration methods capture intersubject non-linear deformations with a low number of parameters, while providing an intuitive interpretation for clinicians. Considering the mandible bone, anatomical shape differences can be found at different scales, e.g. left or right side, teeth, etc. Classically, sequential coarse to fine registration are used to handle multiscale deformations, instead we propose a simultaneous optimization of all scales. To avoid local minima we incorporate a prior on the polyaffine transformations. This kind of groupwise registration approach is natural in a polyaffine context, if we assume one configuration of regions that describes an entire group of images, with varying transformations for each region. In this paper, we reformulate polyaffine deformations in a generative statistical model, which enables us to incorporate deformation statistics as a prior in a Bayesian setting. We find optimal transformations by optimizing the maximum a posteriori probability. We assume that the polyaffine transformations follow a normal distribution with mean and concentration matrix. Parameters of the prior are estimated from an initial coarse to fine registration. Knowing the region structure, we develop a blockwise pseudoinverse to obtain the concentration matrix. To our knowledge, we are the first to introduce simultaneous multiscale optimization through groupwise polyaffine registration. We show results on 42 mandible CT images.
Resumo:
Towards the goal of investigating the possible Twisted Intramolecular Charge Transfer (TICT) state mechanism of fluorescence emission, two aromatic dicyanovinyl compounds, 2-(naphthalene-2-ylmethylene) malononitrile (DCN) and a rigidified analogue, 3,4-dihydrophenanthren-1(2H)-ylidene)malononitrile (RDCN) were synthesized and their absorption and steady-state fluorescence emission spectra characterized. The spectral characterization was divided into two studies: first, DCN and RDCN were characterized in liquid solvents of increasing polarity; second, DCN and RDCN were characterized in viscous solvents and rigid glass media. The absorption spectra for both DCN and RDCN in all solvents demonstrated little to no solvatochromism. Emission results for DCN and RDCN in liquid solvents of increasing polarity showed DCN possessing strong solvatochromism while RDCN showed much less solvatochromism. Using the Lippert-Mataga equation, the difference between the ground and excited state dipole moment for DCN was estimated to be 8.4 + 0.4 Debye and between ~3.0 to 5.0 Debye for RDCN. Quantum yield measurements for DCN and RDCN in hexane, diethyl ether and acetonitrile were less than 0.01 and independent of polarity for both both solvents, with DCN generally possessing a quantum yield 3-4 times greater than RDCN. Experiments in glass media for DCN and RDCN showed a lessening of their solvatochromic character in both polar and non-polar glasses. These data provide strong evidence for a link between molecular flexibility and solvatochromism. However, while these data are consistent with a TICT state hypothesis for the emission mechanism, an alternative mechanism proposed by Maroncelli et al.10 involving rotation about the dicyanovinyl double bond in the excited state remains a possibility as well.
Resumo:
Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.
Resumo:
This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.