953 resultados para Transport properties.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex network theory is a framework increasingly used in the study of air transport networks, thanks to its ability to describe the structures created by networks of flights, and their influence in dynamical processes such as delay propagation. While many works consider only a fraction of the network, created by major airports or airlines, for example, it is not clear if and how such sampling process bias the observed structures and processes. In this contribution, we tackle this problem by studying how some observed topological metrics depend on the way the network is reconstructed, i.e. on the rules used to sample nodes and connections. Both structural and simple dynamical properties are considered, for eight major air networks and different source datasets. Results indicate that using a subset of airports strongly distorts our perception of the network, even when just small ones are discarded; at the same time, considering a subset of airlines yields a better and more stable representation. This allows us to provide some general guidelines on the way airports and connections should be sampled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ageing and deterioration of infrastructure is a challenge facing transport authorities. In particular, there is a need for increased bridge monitoring in order to provide adequate maintenance, prioritise allocation of funds and guarantee acceptable levels of transport safety. Existing bridge structural health monitoring (SHM) techniques typically involve direct instrumentation of the bridge with sensors and equipment for the measurement of properties such as frequencies of vibration. These techniques are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive due to the requirement for on-site installations. In recent years, alternative low-cost indirect vibrationbased SHM approaches have been proposed which utilise the dynamic response of a vehicle to carry out “drive-by” pavement and/or bridge monitoring. The vehicle is fitted with sensors on its axles thus reducing the need for on-site installations. This paper investigates the use of low-cost sensors incorporating global navigation satellite systems (GNSS) for implementation of the drive-by system in practice, via field trials with an instrumented vehicle. The potential of smartphone technology to be harnessed for drive by monitoring is established, while smartphone GNSS tracking applications are found to compare favourably in terms of accuracy, cost and ease of use to professional GNSS devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and condition of membrane lipids, the morphology of erythrocytes, and hemoglobin distribution were explored with the help of laser interference microscopy (LIM) and Raman spectroscopy. It is shown that patients with cardiovascular diseases (CVD) have significant changes in the composition of their phospholipids and the fatty acids of membrane lipids. Furthermore, the microviscosity of the membranes and morphology of the erythrocytes are altered causing disordered oxygen transport by hemoglobin. Basic therapy carried out with the use of antiaggregants, statins, antianginals, beta-blockers, and calcium antagonists does not help to recover themorphofunctional properties of erythrocytes. Based on the results the authors assume that, for the relief of the ischemic crisis and further therapeutic treatment, it is necessary to include, in addition to cardiovascular disease medicines, medication that increases the ability of erythrocytes’ hemoglobin to transport oxygen to the tissues. We assume that the use of LIM and Raman spectroscopy is advisable for early diagnosis of changes in the structure and functional state of erythrocytes when cardiovascular diseases develop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMMONIUM UPTAKE, TRANSPORT AND NITROGEN ECONOMY IN FOREST TREES Francisco M. Cánovas, Concepción Avila, Fernando N. de la Torre, Rafael A. Cañas, Belén Pascual, Vanessa Castro- Rodríguez, Jorge El-Azaz Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain. Email: canovas@uma.es Forests ecosystems play a fundamental role in the regulation of global carbon fixation and preservation of biodiversity. Forest trees are also of great economic value because they provide a wide range of products of commercial interest, including wood, pulp, biomass and important secondary metabolites. The productivity of most forest ecosystems is limited by low nitrogen availability and woody perennials have developed adaptation mechanisms, such as ectomycorrhizal associations, to increase the efficiency of N acquisition and metabolic assimilation. The efficient acquisition, assimilation and economy of nitrogen are of special importance in trees that must cope with seasonal periods of growth and dormancy over many years. In fact, the ability to accumulate nitrogen reserves and to recycle N is crucial to determine the growth and production of forest biomass. Ammonium is the predominant form of inorganic nitrogen in the soil of temperate forests and many research efforts are addressed to study the regulation of ammonium acquisition, assimilation and internal recycling for the biosynthesis of amino acids, particularly those relevant for nitrogen storage. In our laboratory, we are interested in studying nitrogen metabolism and its regulation in maritime pine (Pinus pinaster L. Aiton), a conifer species of great ecological and economic importance in Europe and for which whole-transcriptome resources are available. The metabolism of phenylalanine plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids and the regulation of this pathway is of broad significance for nitrogen economy of maritime pine. We are currently exploring the molecular properties and regulation of genes involved in the biosynthesis and metabolic fates of phenylalanine in maritime pine. An overview of this research programme will be presented and discussed. Research supported by Spanish Ministry of Economy and Competitiveness and Junta de Andalucía (Grants BIO2015-69285-R, BIO2012-0474 and research group BIO-114).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. This physical complexity has led to ambiguous definition of the reference frame (Lagrangian or Eulerian) in which sediment transport is analysed. A general Eulerian-Lagrangian approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. The necessary Eulerian-Lagrangian transformations are simplified under the assumption of an ideal Inertial Measurement Unit (IMU), rigidly attached at the centre of the mass of a sediment particle. Real, commercially available IMU sensors can provide high frequency data on accelerations and angular velocities (hence forces and energy) experienced by grains during entrainment and motion, if adequately customized. IMUs are subjected to significant error accu- mulation but they can be used for statistical parametrisation of an Eulerian-Lagrangian model, for coarse sediment particles and over the temporal scale of individual entrainment events. In this thesis an Eulerian-Lagrangian model is introduced and evaluated experimentally. Absolute inertial accelerations were recorded at a 4 Hz frequency from a spherical instrumented particle (111 mm diameter and 2383 kg/m3 density) in a series of entrainment threshold experiments on a fixed idealised bed. The grain-top inertial acceleration entrainment threshold was approximated at 44 and 51 mg for slopes 0.026 and 0.037 respectively. The saddle inertial acceleration entrainment threshold was at 32 and 25 mg for slopes 0.044 and 0.057 respectively. For the evaluation of the complete Eulerian-Lagrangian model two prototype sensors are presented: an idealised (spherical) with a diameter of 90 mm and an ellipsoidal with axes 100, 70 and 30 mm. Both are instrumented with a complete IMU, capable of sampling 3D inertial accelerations and 3D angular velocities at 50 Hz. After signal analysis, the results can be used to parametrize sediment movement but they do not contain positional information. The two sensors (spherical and ellipsoidal) were tested in a series of entrainment experiments, similar to the evaluation of the 111 mm prototype, for a slope of 0.02. The spherical sensor entrained at discharges of 24.8 ± 1.8 l/s while the same threshold for the ellipsoidal sensor was 45.2 ± 2.2 l/s. Kinetic energy calculations were used to quantify the particle-bed energy exchange under fluvial (discharge at 30 l/s) and non-fluvial conditions. All the experiments suggest that the effect of the inertial characteristics of coarse sediments on their motion is comparable to the effect hydrodynamic forces. The coupling of IMU sensors with advanced telemetric systems can lead to the tracking of Lagrangian particle trajectories, at a frequency and accuracy that will permit the testing of diffusion/dispersion models across the range of particle diameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driven by environmental reasons and the expected depletion of crude oil, bio-based polymers are currently undergoing a renaissance in the attempt to replace fossil-based ones. The present work aims at contributing in the development of the steps that start from biomass and move to new polymeric multifunctional materials. The study focuses on two bio-based building blocks (itaconic and vanillic acids) characterized by exploitable functionalities, i.e. a lateral double bond and a substituted aromatic ring respectively, able to confer interesting properties to the final polymers. The lateral double bond of dimethyl itaconate was functionalized via thia-Michael addition reaction obtaining a thermo-stable building block that can undergo polycondensation under classical conditions of reaction. The addition of a long lateral chain allows the polymer to express antimicrobial activity against Staphylococcus aureus making it attractive for packaging and targeting antimicrobial applications. Moreover, the architecture of the homopolymer was modified by means of copolymerization with dimethyl 2,5-furandicarboxylate thus improving the rigidity and obtaining a thermo-processable material. Potential applications as thermoset or thermoplastic material have been discussed. As concerns vanillic acid, the presence of aromatic rings on the polymer backbone imparts high thermal stability, but brittle behaviour in the homopolymer. Therefore, the architecture of the polyester was successfully tuned by means of copolymerization with a flexible bio-based comonomer, i.e. ω-pentadecalactone, providing processable random copolymers. An in depth investigation of water transport mechanism has been undertaken on the synthesized polyesters. Since the copolymers present a succession of aromatic and aliphatic units, as a consequence of the chemical structure water vapor permeability interposes between polyethylene and poly(ethylene terephthalate) proving that the copolyesters are suitable for packaging applications. Moving towards a sustainable model of development, novel sustainable synthetic pathways for the eco-design of new bio-based polymeric structures with high value functionalities and different potential applications have been successfully developed.