1000 resultados para Transitional object


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel descriptor for shapes. The proposed descriptor is obtained from 3D spherical harmonics. The inadequacy of 2D spherical harmonics is addressed and the method to obtain 3D spherical harmonics is described. 3D spherical harmonics requires construction of a 3D model which implicitly represents rich features of objects. Spherical harmonics are used to obtain descriptors from the 3D models. The performance of the proposed method is compared against the CSS approach which is the MPEG-7 descriptor for shape contour. MPEG-7 dataset of shape contours, namely, CE-1 is used to perform the experiments. It is shown that the proposed method is effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the design and implementation of an immersive Virtual Reality (VR) interaction system. The system aims to provide a flexible mechanism for programmers to implement interaction in their VR applications, making good use of all accepted practices in the field. The paper further describes how the system was extended to a multi-user system using the CORBA middleware layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We modify a selection of interactive modeling tools for use in a procedural modeling environment. These tools are selection, extrusion, subdivision and curve shaping. We create human models to demonstrate that these tools are appropriate for use on hierarchical objects. Our tools support the main benefits of procedural modeling, which are: the use of parameterisation to control and very a model, varying levels of detail, increased model complexity, base shape independence and database amplification. We demonstrate scripts which provide each of these benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a simple yet powerful branch-and-bound method called Efficient Subwindow Search (ESS) was developed to speed up sliding window search in object detection. A major drawback of ESS is that its computational complexity varies widely from O(n2) to O(n4) for n × n matrices. Our experimental experience shows that the ESS's performance is highly related to the optimal confidence levels which indicate the probability of the object's presence. In particular, when the object is not in the image, the optimal subwindow scores low and ESS may take a large amount of iterations to converge to the optimal solution and so perform very slow. Addressing this problem, we present two significantly faster methods based on the linear-time Kadane's Algorithm for 1D maximum subarray search. The first algorithm is a novel, computationally superior branchand- bound method where the worst case complexity is reduced to O(n3). Experiments on the PASCAL VOC 2006 data set demonstrate that this method is significantly and consistently faster (approximately 30 times faster on average) than the original ESS. Our second algorithm is an approximate algorithm based on alternating search, whose computational complexity is typically O(n2). Experiments shows that (on average) it is 30 times faster again than our first algorithm, or 900 times faster than ESS. It is thus wellsuited for real time object detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional methods of object recognition are reliant on shape and so are very difficult to apply in cluttered, wideangle and low-detail views such as surveillance scenes. To address this, a method of indirect object recognition is proposed, where human activity is used to infer both the location and identity of objects. No shape analysis is necessary. The concept is dubbed 'interaction signatures', since the premise is that a human will interact with objects in ways characteristic of the function of that object - for example, a person sits in a chair and drinks from a cup. The human-centred approach means that recognition is possible in low-detail views and is largely invariant to the shape of objects within the same functional class. This paper implements a Bayesian network for classifying region patches with object labels, building upon our previous work in automatically segmenting and recognising a human's interactions with the objects. Experiments show that interaction signatures can successfully find and label objects in low-detail views and are equally effective at recognising test objects that differ markedly in appearance from the training objects.