954 resultados para Transition Metal Exchanged Catalysts
Resumo:
The transition from van der Waals to covalent bonding, which is expected to occur in divalent-metal clusters with increasing cluster size, is discussed. We propose a model which takes into account, within the same electronic theory, the three main competing contributions, namely the kinetic energy of the electrons, the Coulomb interactions between electrons, and the s \gdw p intraatomic transitions responsible for van der Waals like bonding. The model is solved by taking into account electron correlations using a generalized Gutzwiller approximation (slave boson method). The occurrence of electron localization is studied as a function of the interaction parameters and cluster size.
Resumo:
Propylene polymerization using salicyladiminato metal catalalysts has been studied using density functional theory at the B3LYP/LANL2DZ level. In particular, the effects on the reaction mechanisms of changing the metal from Pd(II) to Ni(II) have been investigated. While the reaction mechanisms involving the salicyladiminato Ni(II) catalyst have been found to be similar to those established previously for the salicyladiminato Pd(II) catalyst, the nickel catalyst was found to differentiate the trans-O intermediate from the trans-.N intermediate with an energy difference of 46.63 U mol(-1) significantly more than the palladium catalyst for which the energy difference was calculated as 35.82 kJ mol(-1). The energy difference between the trans-O configuration and the trans-N configuration is decreased significantly when combining a molecule of propylene with the catalyst. For the Ni catalyst, the trans-O isomer is more stable than the trans-N isomer to a greater extent than for Pd, so that the insertion of propylene from 20 is relatively less favoured for Ni than for Pd. It is predicted that the mechanism of isomerization from 20 to 2N through a rotational transition state TS2O2N is more appropriate for the Ni catalyst system. The palladium system shows a larger preference for pi-coordination than its nickel counterpart, although the latter possesses a lower reaction barrier. It was found that the occupation of the trans-O position in the asymmetric salicyladiminato catalyst is also more favored by the alkene as it is by the alkyl so that insertion of the alkene may always start from a particular configuration so that specific products are obtained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen spillover on carbon-supported precious metal catalysts has been investigated with inelastic neutron scattering (INS) spectroscopy. The aim, which was fully realized, was to identify spillover hydrogen on the carbon support. The inelastic neutron scattering spectra of Pt/C, Ru/C, and PtRu/C fuel cell catalysts dosed with hydrogen were determined in two sets of experiments: with the catalyst in the neutron beam and, using an annular cell, with carbon in the beam and catalyst pellets at the edge of the cell excluded from the beam. The vibrational modes observed in the INS spectra were assigned with reference to the INS of a polycyclic aromatic hydrocarbon, coronene, taken as a molecular model of a graphite layer, and with the aid of computational modeling. Two forms of spillover hydrogen were identified: H at edge sites of a graphite layer (formed after ambient dissociative chemisorption of H-2), and a weakly bound layer of mobile H atoms (formed by surface diffusion of H atoms after dissociative chernisorption of H-2 at 500 K). The INS spectra exhibited characteristic riding modes of H on carbon and on Pt or Ru. In these riding modes H atoms move in phase with vibrations of the carbon and metal lattices. The lattice modes are amplified by neutron scattering from the H atoms attached to lattice atoms. Uptake of hydrogen, and spillover, was greater for the Ru containing catalysts than for the Pt/C catalyst. The INS experiments have thus directly demonstrated H spillover to the carbon support of these metal catalysts.
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Nanometer metal particles of tailored size (3-5 nm) and composition prepared via inverse microemulsion were encapsulated by ultrathin coatings (<2.5 nm) of inorganic porous aerogels covered with surface -OH groups. These composite materials formed metastable colloids in solvent(s), and the organic surfactant molecules were subsequently removed without leading to aggregation (the ethanolic colloid solution was shown to be stable against flocculation for at least weeks). We demonstrate that the totally inorganic-based composite colloids, after the removal of surfactant, can be anchored to conventional solid supports (gamma-alumina, carbons) upon mixing. Application of a high temperature resulted in the formation of strong covalent linkages between the colloids and the support because of the condensation of surface groups at the interface. Detailed characterizations (X-ray diffraction (XRD), pore analysis, transmission electron microscopy (TEM), CO chemisorption) and catalytic testing (butane combustion) showed that there was no significant metal aggregation from the fine metal particles individually coated with porous aerogel oxide. Most of these metal sites on the coated nanoparticles with and without support are fully accessible by small molecules hence giving extremely active metal catalysts. Thus, the product and technology described may be suitable to synthesize these precursor entities of defined metal sizes (as inks) for wash coat/impregnation applications in catalysis. The advantages of developing inorganic nanocomposite chemical precursors are also discussed.
Resumo:
The strong metal support interaction (SMSI) was first described in 1978 by Tauster [1-4]. The effect was observed as a severely negative effect on CO and H2 uptake on the catalyst after high temperature calcination under reducing conditions (heating above ~ 700 K) [1,2]. It also had a negative effect on the reaction rate for reactions, such as alkane hydrogenolysis [5,6]. It appeared that the effect occurred for catalysts comprised of reducible supports which were treated at elevated temperature in reducing conditions [2-4]. A classic support which has manifested this behaviour in many studies is TiO2. Over the years following the first discovery of SMSI it has been recognised that the effect is not always negative – for instance for the CO-H2 reaction for which it appears to have a positive effect [5,6]. Further it was noted that hydrogen reduction was not necessary to observe the effect of CO adsorption suppression, it also occurs by vacuum treatment [7], though it should be noted that vacuum treatment at elevated temperature is, in effect, a reducing environment.
Resumo:
The rigid [6]ferrocenophane, L-1, was synthesised by condensation of 1,1'-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L-2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L-1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L-1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M (Bu4NPF6)-Bu-n as the supporting electrolyte. The electrochemical process of L-1 between 300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc(+) wave of L-1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L-1 weak interactions and they promote the acid-base equilibrium of L-1. This reveals that L-1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [(PdLCl2)-Cl-1] was determined and showed a square-planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) angstrom. The experimental anodic shifts were elucidated by DFT calculations on the [(MLCl2)-Cl-1] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.
Resumo:
A general view of the electroanalytical applications of metal-salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho-phenolic aldehydes (N,N'-ethylenebis(salicylideneiminato) - salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal-salen complexes will be presented. The potentialities and possibilities of metal-Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Su-Schrieffer-Heeger (SSH) Hamiltonian has been one of most used models to study the electronic structure of polyacetylene (PA) chains. It has been reported in the literature that in the SSH framework a disordered soliton distribution can not produce a metallic regime. However, in this work (using the same SSH model and parameters) we show that this is possible. The necessary conditions for true metals (non-vanishing density of states and extended wavefunctions around the Fermi level) are obtained for soliton concentration higher than 6% through soliton segregation (clustering). These results are consistent with recent experimental data supporting disorder as an essential mechanism behind the high conductivity of conducting polymers. (C) 2001 Elsevier B.V. B.V. All rights reserved.