878 resultados para Topologies on an arbitrary set
Resumo:
Bonding a fibre reinforced polymer (FRP) composite or metallic plate to the soffit of a reinforced concrete (RC), timber or metallic beam can significantly increase its strength and other aspects of structural performance. These hybrid beams are often found to fail due to premature debonding of the plate from the original beam in a brittle manner. This has led to the development of many analytical solutions over the last two decades to quantify the interfacial shear and normal stresses between the adherends. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the influence of shear deformation of the adherends. For the few solutions which consider this effect in an approximate manner, their applicability is limited to one or two specific load cases. This paper presents a general analytical solution for the interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered. The shear stress distribution is assumed to be parabolic through the depth of the adherends in predicting the interfacial shear stress and Timoshenko's beam theory is adopted in predicting interfacial normal stress to account for the shear deformation. The solution is applicable to a beam of arbitrary prismatic cross-section bonded symmetrically or asymmetrically with a thin or thick plate, both having linear elastic material properties. The effect of shear deformation is illustrated through an example beam. The influence of material and geometric parameters of the adherends and adhesive on the interfacial stress concentrations at the plate end is discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.
Resumo:
Central to network tomography is the problem of identifiability, the ability to identify internal network characteristics uniquely from end-to-end measurements. This problem is often underconstrained even when internal network characteristics such as link delays are modeled as additive constants. While it is known that the network topology can play a role in determining the extent of identifiability, there is a lack in the fundamental understanding of being able to quantify it for a given network. In this paper, we consider the problem of identifying additive link metrics in an arbitrary undirected network using measurement nodes and establishing paths/cycles between them. For a given placement of measurement nodes, we define and derive the ``link rank'' of the network-the maximum number of linearly independent cycles/paths that may be established between the measurement nodes. We achieve this in linear time. The link rank helps quantify the exact extent of identifiability in a network. We also develop a quadratic time algorithm to compute a set of cycles/paths that achieves the maximum rank.
Resumo:
A simple relationship between the initial unloading slope, the contact area, and the elastic modulus is derived for indentation in elastic-plastic solids by an indenter with an arbitrary axisymmetric smooth profile. Although the same expression was known to hold for elastic solids, the new derivation shows that it is also true for elastic-plastic solids with or without work hardening and residual stress. These results should provide a sound basis for the use of the relationship for mechanical property determination using indentation techniques. (C) 1997 American Institute of Physics.
Resumo:
This thesis consists of two independent chapters. The first chapter deals with universal algebra. It is shown, in von Neumann-Bernays-Gӧdel set theory, that free images of partial algebras exist in arbitrary varieties. It follows from this, as set-complete Boolean algebras form a variety, that there exist free set-complete Boolean algebras on any class of generators. This appears to contradict a well-known result of A. Hales and H. Gaifman, stating that there is no complete Boolean algebra on any infinite set of generators. However, it does not, as the algebras constructed in this chapter are allowed to be proper classes. The second chapter deals with positive elementary inductions. It is shown that, in any reasonable structure ᶆ, the inductive closure ordinal of ᶆ is admissible, by showing it is equal to an ordinal measuring the saturation of ᶆ. This is also used to show that non-recursively saturated models of the theories ACF, RCF, and DCF have inductive closure ordinals greater than ω.
A model for energy and morphology of crystalline grain boundaries with arbitrary geometric character
Resumo:
It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.
In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.
In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.
Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A two-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In the proposed addition algorithm, carry propagation is avoided by using reference digits to restrict the intermediate MSD carry and sum digits into {(1) over bar ,0} and {0, 1}, respectively. The algorithm requires only 12 minterms to generate the final results, and no complementarity operations for nonzero outputs are involved, which simplifies the system complexity significantly. An optoelectronic shared content-addressable memory based on an incoherent correlator is used for experimental demonstration. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In 1964 A. W. Goldie [1] posed the problem of determining all rings with identity and minimal condition on left ideals which are faithfully represented on the right side of their left socle. Goldie showed that such a ring which is indecomposable and in which the left and right principal indecomposable ideals have, respectively, unique left and unique right composition series is a complete blocked triangular matrix ring over a skewfield. The general problem suggested above is very difficult. We obtain results under certain natural restrictions which are much weaker than the restrictive assumptions made by Goldie.
We characterize those rings in which the principal indecomposable left ideals each contain a unique minimal left ideal (Theorem (4.2)). It is sufficient to handle indecomposable rings (Lemma (1.4)). Such a ring is also a blocked triangular matrix ring. There exist r positive integers K1,..., Kr such that the i,jth block of a typical matrix is a Ki x Kj matrix with arbitrary entries in a subgroup Dij of the additive group of a fixed skewfield D. Each Dii is a sub-skewfield of D and Dri = D for all i. Conversely, every matrix ring which has this form is indecomposable, faithfully represented on the right side of its left socle, and possesses the property that every principal indecomposable left ideal contains a unique minimal left ideal.
The principal indecomposable left ideals may have unique composition series even though the ring does not have minimal condition on right ideals. We characterize this situation by defining a partial ordering ρ on {i, 2,...,r} where we set iρj if Dij ≠ 0. Every principal indecomposable left ideal has a unique composition series if and only if the diagram of ρ is an inverted tree and every Dij is a one-dimensional left vector space over Dii (Theorem (5.4)).
We show (Theorem (2.2)) that every ring A of the type we are studying is a unique subdirect sum of less complex rings A1,...,As of the same type. Namely, each Ai has only one isomorphism class of minimal left ideals and the minimal left ideals of different Ai are non-isomorphic as left A-modules. We give (Theorem (2.1)) necessary and sufficient conditions for a ring which is a subdirect sum of rings Ai having these properties to be faithfully represented on the right side of its left socle. We show ((4.F), p. 42) that up to technical trivia the rings Ai are matrix rings of the form
[...]. Each Qj comes from the faithful irreducible matrix representation of a certain skewfield over a fixed skewfield D. The bottom row is filled in by arbitrary elements of D.
In Part V we construct an interesting class of rings faithfully represented on their left socle from a given partial ordering on a finite set, given skewfields, and given additive groups. This class of rings contains the ones in which every principal indecomposable left ideal has a unique minimal left ideal. We identify the uniquely determined subdirect summands mentioned above in terms of the given partial ordering (Proposition (5.2)). We conjecture that this technique serves to construct all the rings which are a unique subdirect sum of rings each having the property that every principal-indecomposable left ideal contains a unique minimal left ideal.
Resumo:
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.
Resumo:
We propose a more general method for detecting a set of entanglement measures, i.e., negativities, in an arbitrary tripartite quantum state by local operations and classical communication. To accomplish the detection task using this method, three observers do not need to perform partial transposition maps by the structural physical approximation; instead, they only need to collectively measure some functions via three local networks supplemented by a classical communication. With these functions, they are able to determine the set of negativities related to the tripartite quantum state.
Resumo:
In this article, we offer a new way of exploring relationships between three different dimensions of a business operation, namely the stage of business development, the methods of creativity and the major cultural values. Although separately, each of these has gained enormous attention from the management research community, evidenced by a large volume of research studies, there have been not many studies that attempt to describe the logic that connect these three important aspects of a business; let alone empirical evidences that support any significant relationships among these variables. The paper also provides a data set and an empirical investigation on that data set, using a categorical data analysis, to conclude that examinations of these possible relationships are meaningful and possible for seemingly unquantifiable information. The results also show that the most significant category among all creativity methods employed in Vietnamese enterprises is the “creative disciplines” rule in the “entrepreneurial phase,” while in general creative disciplines have played a critical role in explaining the structure of our data sample, for both stages of development in our consideration.
Resumo:
Let X be a quasi-compact scheme, equipped with an open covering by affine schemes U s = Spec A s . A quasi-coherent sheaf on X gives rise, by taking sections over the U s , to a diagram of modules over the coordinate rings A s , indexed by the intersection poset S of the covering. If X is a regular toric scheme over an arbitrary commutative ring, we prove that the unbounded derived category of quasi-coherent sheaves on X can be obtained from a category of Sop-diagrams of chain complexes of modules by inverting maps which induce homology isomorphisms on hyper-derived inverse limits. Moreover, we show that there is a finite set of weak generators, one for each cone in the fan S. The approach taken uses the machinery of Bousfield–Hirschhorn colocalisation of model categories. The first step is to characterise colocal objects; these turn out to be homotopy sheaves in the sense that chain complexes over different open sets U s agree on intersections up to quasi-isomorphism. In a second step it is shown that the homotopy category of homotopy sheaves is equivalent to the derived category of X.
Resumo:
The answer to the question of what it means to say that a right is absolute is often taken for granted, yet still sparks doubt and scepticism. This article investigates absoluteness further, bringing rights theory and the judicial approach on an absolute right together. A theoretical framework is set up that addresses two distinct but potentially related parameters of investigation: the first is what I have labelled the ‘applicability’ criterion, which looks at whether and when the applicability of the standard referred to as absolute can be displaced, in other words whether other considerations can justify its infringement; the second parameter, which I have labelled the ‘specification’ criterion, explores the degree to which and bases on which the content of the standard characterised as absolute is specified. This theoretical framework is then used to assess key principles and issues that arise in the Strasbourg Court’s approach to Article 3. It is suggested that this analysis allows us to explore both the distinction and the interplay between the two parameters in the judicial interpretation of the right and that appreciating the significance of this is fundamental to the understanding of and discourse on the concept of an absolute right.