774 resultados para Toluene dioxygenase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Derzeit stellt die allergenspezifische Immuntherapie die einzige nicht allein antisymptomatische Behandlungsform zur langfristigen Therapie von Typ I-Allergien dar, welche grundlegende Änderungen im immunologischen Geschehen induziert. Sie ist jedoch verbesserungswürdig in Bezug auf Behandlungsdauer, Erfolgschancen und Nebenwirkungen. Daher wurde in dieser Arbeit eine Strategie zur Therapie von Typ I-Allergien entwickelt und evaluiert, welche auf der Inhibition allergenspezifischer T-Zellen durch Dendritische Zellen (DC), die selektiv nach DNA-Immunisierung sowohl das relevante Allergen als auch Indolamin 2,3-dioxygenase (IDO) konstitutiv produzieren, basiert. IDO ist ein Enzym aus dem Tryptophan-Stoffwechsel, dessen Produktion durch DC einen lokalen immunsuppressiven Mechanismus induziert und in verschiedenen Situationen mit der Induktion peripherer Toleranz assoziiert ist. Zunächst wurden Plasmide hergestellt, die entweder IDO alleine oder IDO zusammen mit dem Antigen unter der Kontrolle des ubiquitär aktiven CMV- bzw. des DC-spezifischen Fascin-Promotors kodieren. Die Überprüfung der IDO-Expression durch die monocistronischen Plasmide anhand von Transfektionsexperimenten in vitro ergab, dass die IDO-Expression unter der Kontrolle des CMV-Promotors sehr viel stärker ausfiel als unter der Kontrolle des Fascin-Promotors. Nach Transfektion mit den bicistronischen Vektoren, in denen die Transgene für das Antigen und IDO durch eine IRES-Sequenz verbunden waren, war die IDO-Expression jedoch insgesamt sehr schwach. Im Rahmen der Überprüfung der Funktionalität der IDO-Expressionplasmide in vivo unter Verwendung der Genpistole wurden daher lediglich Plasmide getestet, die alleine IDO unter der Kontrolle des CMV-Promotors bzw. des Fascin-Promotors kodieren. Auch in vivo wurde eine stärkere IDO-Expression nach biolistischer Transfektion mit solchen Vektoren beobachtet, in denen der CMV-Promotor zur Expressionskontrolle verwendet wurde. Die Analyse des Einflusses einer Koexpression von IDO auf die durch biolistische Immunisierung mit einem antigenkodierenden Vektor induzierte systemische Immunantwort offenbarte einen inhibitorischer Effekt für den Fall, dass die Antigenproduktion mittels des Fascin-Promotors auf DC fokussiert war und die Expression des koapplizierten IDO-Transgens unter der Kontrolle des CMV-Promotors stand. In diesem Fall wurde eine Reduktion der antigenspezifischen IgG1- und IgG2a-Produktion, eine verringerte Sekretion von IFN-y durch restimulierte Milz- und Lymphknotenzellen sowie eine Reduktion der Zahl antigenspezifischer CD8+ Effektor-T-Zellen nachgewiesen. Im Mausmodell der IgE-vermittelten Typ I-Allergie wurde weiterhin gezeigt, dass nach prophylaktischer biolistischer Vakzinierung unter Verwendung dieser Vektorkombination eine Inhibition der durch die Vakzinierung bedingten antigenspezifischen Th1-Immunantwort ausgelöst wurde. Die Suppression der Th2-Antwort, welche durch Transfektion mit dem Antigenkodierenden Vektor unter Kontrolle des Fascin-Promotors bewirkt wurde, wurde durch Kotransfektion mit den IDO-kodierenden Vektoren aufrecht erhalten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceans are key sources and sinks in the global budgets of significant atmospheric trace gases, termed Volatile Organic Compounds (VOCs). Despite their low concentrations, these species have an important role in the atmosphere, influencing ozone photochemistry and aerosol physics. Surprisingly, little work has been done on assessing their emissions or transport mechanisms and rates between ocean and atmosphere, all of which are important when modelling the atmosphere accurately.rnA new Needle Trap Device (NTD) - GC-MS method was developed for the effective sampling and analysis of VOCs in seawater. Good repeatability (RSDs <16 %), linearity (R2 = 0.96 - 0.99) and limits of detection in the range of pM were obtained for DMS, isoprene, benzene, toluene, p-xylene, (+)-α-pinene and (-)-α-pinene. Laboratory evaluation and subsequent field application indicated that the proposed method can be used successfully in place of the more usually applied extraction techniques (P&T, SPME) to extend the suite of species typically measured in the ocean and improve detection limits. rnDuring a mesocosm CO2 enrichment study, DMS, isoprene and α-pinene were identified and quantified in seawater samples, using the above mentioned method. Based on correlations with available biological datasets, the effects of ocean acidification as well as possible ocean biological sources were investigated for all examined compounds. Future ocean's acidity was shown to decrease oceanic DMS production, possibly impact isoprene emissions but not affect the production of α-pinene. rnIn a separate activity, ocean - atmosphere interactions were simulated in a large scale wind-wave canal facility, in order to investigate the gas exchange process and its controlling mechanisms. Air-water exchange rates of 14 chemical species (of which 11 VOCs) spanning a wide range of solubility (dimensionless solubility, α = 0:4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were obtained under various turbulent (wind speed at ten meters height, u10 = 0:8 to 15ms-1) and surfactant modulated (two different sized Triton X-100 layers) surface conditions. Reliable and reproducible total gas transfer velocities were obtained and the derived values and trends were comparable to previous investigations. Through this study, a much better and more comprehensive understanding of the gas exchange process was accomplished. The role of friction velocity, uw* and mean square slope, σs2 in defining phenomena such as waves and wave breaking, near surface turbulence, bubbles and surface films was recognized as very significant. uw* was determined as the ideal turbulent parameter while σs2 described best the related surface conditions. A combination of both uw* and σs2 variables, was found to reproduce faithfully the air-water gas exchange process. rnA Total Transfer Velocity (TTV) model provided by a compilation of 14 tracers and a combination of both uw* and σs2 parameters, is proposed for the first time. Through the proposed TTV parameterization, a new physical perspective is presented which provides an accurate TTV for any tracer within the examined solubility range. rnThe development of such a comprehensive air-sea gas exchange parameterization represents a highly useful tool for regional and global models, providing accurate total transfer velocity estimations for any tracer and any sea-surface status, simplifying the calculation process and eliminating inevitable calculation uncertainty connected with the selection or combination of different parameterizations.rnrn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis investigates the effect of surface treatment with various reducing and oxidizing agents on the quantum yield (QY) of CdSe and CdS quantum dots (QDs). The QDs, as synthesized by the organometallic method, contained defect sites on their surface that trapped photons and prevented their radiative recombination, therefore resulting in adecreased QY. To passivate these defect sites and enhance the QY, the QDs were treated with various reducing and oxidizing agents, including: sodium borohydride (NaBH4), calcium hydride (CaH2), hydrazine (N2H4), benzoyl peroxide (C14H10O4), and tert-butylhydroperoxide (C4H10O2). It was hypothesized that the reducing/oxidizing agents reduced the ligands on the QD surface, causing them to detach, thereby allowing oxygen from atmospheric air to bind to the exposed cadmium. This cadmium oxdide (CdO) layeraround the QD surface satisfied the defect sites and resulted in an increased QY. To correlate what effect the reducing and oxidizing agents were having on the optical properties of the QDs, we investigated these treatments on the following factors:chalcogenide (Se vs. S), ligand (oleylamine vs. OA), coordinating solvent (ODE vs.TOA), and dispersant solvent (chloroform vs. toluene) on the overall optical properties of the QDs. The QY of each sample was calculated before and after the various surface treatments from ultra-violet visible spectroscopy (UV-Vis) and fluorescence spectroscopy data to determine if the treatment was successful.From our results, we found that sodium borohydride was the most effective surface treatment, with 10 of the 12 treatments resulting in an increased QY. Hydrazine, on the other hand, was the least effective treatments, as it quenched the QD fluorescence in every case. From these observations, we hypothesize that the effectiveness of the QD surface treatments was dependent on reaction rate. More specifically, when the surface treatment reaction happened too quickly, we hypothesize that the QDs began to aggregate, resulting in a quenched fluorescence. Furthermore, we believe that the reactionrate is dependent on concentration of the reducing/oxidizing agents, solubility of the agents in each solvent, and reactivity of the agents with water. The quantum yield of the QDs can therefore be maximized by slowing the reaction rate of each surface treatment toa rate that allows for the proper passivation of defect sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a novel group of fungal peroxidases, known as the aromatic peroxygenases (APO), has been discovered. Members of these extracellular biocatalysts produced by agaric basidiomycetes such as Agrocybe aegerita or Coprinellus radians catalyze reactions--for example, the peroxygenation of naphthalene, toluene, dibenzothiophene, or pyridine--which are actually attributed to cytochrome P450 monooxygenases. Here, for the first time, genetic information is presented on this new group of peroxide-consuming enzymes. The gene of A. aegerita peroxygenase (apo1) was identified on the level of messenger RNA and genomic DNA. The gene sequence was affirmed by peptide sequences obtained through an Edman degradation and de novo peptide sequencing of the purified enzyme. Quantitative real-time reverse transcriptase polymerase chain reaction demonstrated that the course of enzyme activity correlated well with that of mRNA signals for apo1 in A. aegerita. The full-length sequences of A. aegerita peroxygenase as well as a partial sequence of C. radians peroxygenase confirmed the enzymes' affiliation to the heme-thiolate proteins. The sequences revealed no homology to classic peroxidases, cytochrome P450 enzymes, and only little homology (<30%) to fungal chloroperoxidase produced by the ascomycete Caldariomyces fumago (and this only in the N-terminal part of the protein comprising the heme-binding region and part of the distal heme pocket). This fact reinforces the novelty of APO proteins. On the other hand, homology retrievals in genetic databases resulted in the identification of various APO homologous genes and transcripts, particularly among the agaric fungi, indicating APO's widespread occurrence in the fungal kingdom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of 3-methyl-2-phenylpyrrocoline(I) and dimethyl acetylenedicarboxylate(II) in refluxing toluene furnishes cis-7',8-dihydro.4,5,8,9-tetramethoxycarbonyl-7'-phenyl-7' -methylazocino(2,1,8-cd]pyrrolizine (III) and trans-7',8-dihydro-4,5,8,9-tetramethoxycarbonyl-7-phenyl-7'-methylazocino[2,1,8-cd]pyrrolizine (IV), while the same reaction at ambient temperature yields 1-[(1,2-trans-dimethoxycarbonyl)vinyl]-3-methyl-2-phenylpyrrocoline (V) and 1-[(1,2-cis-di(methoxycarbonyl)vinyl)--methyl-2- phenylpyirocoUne (V) and 1-[(I,2-cis-di(methoxycarbonyl)Yinyl]-3-metbyl-2-phenylpyrrocoline(VI) as the major products. The structure of IV has been determined by X-ray crystallography.A possible mechanism of formation of these products is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent investigations of the tumor microenvironment have shown that many tumors are infiltrated by inflammatory and lymphocytic cells. Increasing evidence suggests that the number, type and location of these tumor-infiltrating lymphocytes in primary tumors has prognostic value, and this has led to the development of an 'immunoscore. As well as providing useful prognostic information, the immunoscore concept also has the potential to help predict response to treatment, thereby improving decision- making with regard to choice of therapy. This predictive aspect of the tumor microenvironment forms the basis for the concept of immunoprofiling, which can be described as 'using an individual's immune system signature (or profile) to predict that patient's response to therapy' The immunoprofile of an individual can be genetically determined or tumor-induced (and therefore dynamic). Ipilimumab is the first in a series of immunomodulating antibodies and has been shown to be associated with improved overall survival in patients with advanced melanoma. Other immunotherapies in development include anti-programmed death 1 protein (nivolumab), anti-PD-ligand 1, anti-CD137 (urelumab), and anti-OX40. Biomarkers that can be used as predictive factors for these treatments have not yet been clinically validated. However, there is already evidence that the tumor microenvironment can have a predictive role, with clinical activity of ipilimumab related to high baseline expression of the immune-related genes FoxP3 and indoleamine 2,3-dioxygenase and an increase in tumor-infiltrating lymphocytes. These biomarkers could represent the first potential proposal for an immunoprofiling panel in patients for whom anti-CTLA-4 therapy is being considered, although prospective data are required. In conclusion, the evaluation of systemic and local immunological biomarkers could offer useful prognostic information and facilitate clinical decision making. The challenge will be to identify the individual immunoprofile of each patient and the consequent choice of optimal therapy or combination of therapies to be used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-gamma (rIFN-gamma), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). METHODS: We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-gamma on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. RESULTS: Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-gamma reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-gamma-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-gamma. Suppression of arginase activity by rIFN-gamma in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-gamma EOC cells. CONCLUSIONS: Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-gamma inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-gamma. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-gamma or rIFN-gamma-inducers, it would be helpful to examine these effects in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation is a key process in cardiovascular diseases. The extracellular matrix (ECM) of the vasculature is a major target of inflammatory cytokines, and TNFalpha regulates ECM metabolism by affecting collagen production. In this study, we have examined the pathways mediating TNFalpha-induced suppression of prolyl-4 hydroxylase alpha1 (P4Halpha1), the rate-limiting isoform of P4H responsible for procollagen hydroxylation, maturation, and organization. Using human aortic smooth muscle cells, we found that TNFalpha activated the MKK4-JNK1 pathway, which induced histone (H) 4 lysine 12 acetylation within the TNFalpha response element in the P4Halpha1 promoter. The acetylated-H4 then recruited a transcription factor, NonO, which, in turn, recruited HDACs and induced H3 lysine 9 deacetylation, thereby inhibiting transcription of the P4Halpha1 promoter. Furthermore, we found that TNFalpha oxidized DJ-1, which may be essential for the NonO-P4Halpha1 interaction because treatment with gene specific siRNA to knockout DJ-1 eliminated the TNFalpha-induced NonO-P4Halpha1 interaction and its suppression. Our findings may be relevant to aortic aneurysm and dissection and the stability of the fibrous cap of atherosclerotic plaque in which collagen metabolism is important in arterial remodeling. Defining this cytokine-mediated regulatory pathway may provide novel molecular targets for therapeutic intervention in preventing plaque rupture and acute coronary occlusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BackgroundBacterial meningitis (BM) is characterized by an intense host inflammatory reaction, which contributes to the development of brain damage and neuronal sequelae. Activation of the kynurenine (KYN) pathway (KP) has been reported in various neurological diseases as a consequence of inflammation. Previously, the KP was shown to be activated in animal models of BM, and the association of the SNP AADAT¿+¿401C/T (kynurenine aminotransferase II - KAT II) with the host immune response to BM has been described. The aim of this study was to investigate the involvement of the KP during BM in humans by assessing the concentrations of KYN metabolites in the cerebrospinal fluid (CSF) of BM patients and their relationship with the inflammatory response compared to aseptic meningitis (AM) and non-meningitis (NM) groups.MethodsThe concentrations of tryptophan (TRP), KYN, kynurenic acid (KYNA) and anthranilic acid (AA) were assessed by HPLC from CSF samples of patients hospitalized in the Giselda Trigueiro Hospital in Natal (Rio Grande do Norte, Brazil). The KYN/TRP ratio was used as an index of indoleamine 2,3-dioxygenase (IDO) activity, and cytokines were measured using a multiplex cytokine assay. The KYNA level was also analyzed in relation to AADAT¿+¿401C/T genotypes.ResultsIn CSF from patients with BM, elevated levels of KYN, KYNA, AA, IDO activity and cytokines were observed. The cytokines INF-¿ and IL-1Ra showed a positive correlation with IDO activity, and TNF-¿ and IL-10 were positively correlated with KYN and KYNA, respectively. Furthermore, the highest levels of KYNA were associated with the AADAT¿+¿401 C/T variant allele.ConclusionThis study suggests a downward modulatory effect of the KP on CSF inflammation during BM.