973 resultados para Tick fever
Resumo:
This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.
Resumo:
Q fever is a common zoonosis worldwide. Awareness of the disease and newer diagnostic modalities have resulted in increasing recognition of unusual manifestations. We report 3 cases of Q fever osteomyelitis in children and review the literature on 11 other reported cases. The cases demonstrate that Coxiella burnetii can cause granulomatous osteomyelitis that presents without systemic symptoms and frequently results in a chronic, relapsing, multifocal clinical course. Optimal selection and duration of antimicrobial therapy and methods of monitoring therapy are currently uncertain.
Genetic typing of classical swine fever viruses from Lao PDR by analysis of the 5' non-coding region
Resumo:
In response to uncertainty among cattle producers in Australia regarding the need to treat Bos indices and B. indicus crossbreeds, the scientific literature relating to the productivity effects of Boophilus microplus on cattle of all breeds was reviewed. Estimates of the mean effect of each engorging tick (damage coefficient, d) were made from a simple analysis of the reported data. On average, each engorging female tick is responsible for the loss of 1.37 +/- 0.25 g bodyweight in B. taunts cattle. The comparable value for B. taurus x B. indicus cattle is 1.18 +/- 0.21 g/engorging tick. These values were not statistically significantly different, indicating that if a threshold approach to tick control were taken, then the threshold number of standard ticks would be the same regardless of cattle genotype. No studies provided useable estimates of the effect of tick infestation on pure B. indices cattle. An economic threshold for treatment, below which acaricide application is not beneficial, can be predicted, using known values for the cost of acaricide application and the price of beef. However, the application of a threshold approach to control has not been embraced by government advisers and runs contrary to the accepted principals of strategic control programs. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.
Resumo:
A randomized double-blind Phase I Trial was conducted to evaluate safety, tolerability, and immunogenicity of a yellow fever (YF)-dengue 2 (DEN2) chimera (ChimeriVax™-DEN2) in comparison to that of YF vaccine (YF-VAX®). Forty-two healthy YF naïve adults randomly received a single dose of either ChimeriVax™-DEN2 (high dose, 5 log plaque forming units [PFU] or low dose, 3 log PFU) or YF-VAXâ by the subcutaneous route (SC). To determine the effect of YF pre-immunity on the ChimeriVaxTM-DEN2 vaccine, 14 subjects previously vaccinated against YF received a high dose of ChimeriVax™-DEN2 as an open-label vaccine. Most adverse events were similar to YF-VAX® and of mild to moderate intensity, with no serious side-effects. One hundred percent and 92.3% of YF naïve subjects inoculated with 5.0 and 3.0 log10 PFU of ChimeriVaxTM-DEN2, respectively, seroconverted to wt DEN2 (strain 16681); 92% of subjects inoculated with YF-VAX® seroconverted to YF 17D virus but none of YF naïve subjects inoculated with ChimeriVax-DEN2 seroconverted to YF 17D virus. Low seroconversion rates to heterologous DEN serotypes 1, 3, and 4 were observed in YF naïve subjects inoculated with either ChimeriVax™-DEN2 or YF-VAX®. In contrast, 100% of YF immune subjects inoculated with ChimeriVax™-DEN2 seroconverted to all 4 DEN serotypes. Surprisingly, levels of neutralizing antibodies to DEN 1, 2, and 3 viruses in YF immune subjects persisted after 1 year. These data demonstrated that 1) the safety and immunogenicity profile of the ChimeriVax™-DEN2 vaccine is consistent with that of YF-VAX®, and 2) pre-immunity to YF virus does not interfere with ChimeriVaxTM-DEN2 immunization, but induces a long lasting and cross neutralizing antibody response to all 4 DEN serotypes. The latter observation can have practical implications toward development of a dengue vaccine.