709 resultados para Threonine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrial matrix flavoproteins electron transfer flavoprotein (ETF) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) are responsible for linking fatty acid β-oxidation with the main mitochondrial respiratory chain. Electrons derived from flavoprotein dehydrogenases are transferred sequentially through ETF and ETF-QO to ubiquinone and then into the respiratory chain via complex III. In this study, the effects of changes in ETF-QO redox potentials on its activity and the conformational flexibility of ETF were investigated. ETF-QO contains one [4Fe-4S]2+,1+ and one flavin adenine dinucleotide (FAD). In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. FAD redox potentials were measured by potentiometric titration probed by electron paramagnetic resonance (EPR) spectroscopy. The N338T and N338A mutations lowered the midpoint potentials, which resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore it is proposed that the iron-sulfur cluster is the immediate acceptor from ETF. It has been proposed that the αII domain of ETF is mobile, allowing promiscuous interactions with structurally different partners. Double electron-electron resonance (DEER) was used to measure the distance between spin labels at various sites and an enzymatically reduced FAD cofactor in Paracoccus denitrificans ETF. Two or three interspin distance distributions were observed for spin-labels in the αI (A43C) and βIII (A111C) domains, but only one is observed for a label in the βII (A210C) domain. This suggests that the αII domain adopts several stable conformations which may correspond to a closed/inactive conformation and an open/active conformation. An additional mutation, E162A, was introduced to increase the mobility of the αII domain. The E162A mutation doubled the activity compared to wild-type and caused the distance distributions to become wider. The DEER method has the potential to characterize conformational changes in ETF that occur when it interacts with various redox partners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcineurin (protein phosphatase 2B) (CN) comprises a family of serine/threonine phosphatases that play a pivotal role in signal transduction cascades in a variety of cells, including neutrophils. Angiotensin II (Ang II) increases both activity and de novo synthesis of CN in human neutrophils. This study focuses on the role that intracellular redox status plays in the induction of CN activity by Ang II. Both de novo synthesis of CN and activity increase promoted by Ang II were downregulated when cells were treated with l-buthionine-(S,R)-sulfoximine, an inhibitor of synthesis of the antioxidant glutathione. We have also investigated the effect of pyrrolidine dithiocarbamate and phenazine methosulfate, which are antioxidant and oxidant compounds, respectively, and concluded that the intracellular redox status of neutrophils is highly critical for Ang II-induced increase of CN expression and activity. Results obtained in neutrophils from hypertensive patients were very similar to those obtained in these cells on treatment with Ang II. We have also addressed the possible functional implication of CN activation in the development of hypertension. Present findings indicate that downregulation of hemoxygenase-1 expression in neutrophils from hypertensive subjects is likely mediated by CN, which acts by hindering translocation to the nucleus of the transcription factor NRF2. These data support and extend our previous results and those from other authors on modulation of CN expression and activity levels by the intracellular redox status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement at Ocean Drilling Program (ODP) Sites 677 and 678 originated from the Galapagos spreading center of the Costa Rica Rift and has moved about 200 km over the last 6 m.y. (Fig. 1) (Shipboard Scientific Party, 1987, 1988; Scientific Drilling Party, 1987). Sediments about 300 m thick cover basement so young that basal sediments at Sites 677 and 678 have been reheated up to 60?-70?C at Site 677 and altered to limestone and/or chert (Shipboard Scientific Party, 1988). Sediments from both sites indicate (1) a high sedimentation rate (about 48 m/m.y.) and (2) biogenic silica and carbonate as the main constituents of sediments (Table 1) (Shipboard Scientific Party, 1988). Heatflow observations and measurements of interstitial water chemistry around the sites show that Site 677 is in a lower heatflow zone (166 mW/m**2; 1°12.14'N, 83°44.22'W) whereas Site 678 is located in a zone of higher heat flow (250 mW/m**2; 1°13.01'N, 83°43.39'W) (Langseth et al., 1988; Shipboard Scientific Party, 1988). In the flank hydrothermal systems, circulating solution is moving upward through the sedimentary column in zones of higher heat flow while it is moving downward in zones of lower heat flow (Anderson and Skilbeck, 1981). The chemistry of the interstitial waters is modified by several processes such as (1) diagenetic reactions and (2) advective and (3) diffusive transports of dissolved constituents. Analyses of Ca2+ and Mg2+ in interstitial waters from Sites 677 and 678 show that their profiles are mainly controlled by advective transport (Shipboard Scientific Party, 1988). In contrast, the interstitial-water profiles for NH4+, Si, and PO4[3-] are highly affected by reactions in the sediments. Site 677 offers a good opportunity to investigate amino acids in the interstitial waters because sediments of similar compositions have been deposited at constant rates of sedimentation. There are few previous works on amino acid distributions in interstitial waters (Henrichs and Parrington, 1979; Michaelis et al., 1982; Henrichs et al., 1984; Henrichs and Farrington, 1987; Ishizuka et al., 1988). In this chapter, we report (1) Rock-Eval analysis and (2) the composition of total hydrolyzable and dissolved free amino acids (THAA and DFAA, respectively) in the interstitial waters. Our objectives are to discuss (1) the possible origin of organic materials, (2) the characteristics of THAA and DFAA, and (3) their relationships in interstitial waters.