955 resultados para Three-dimensional image
Resumo:
In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise arbitrarily shaped cross section and a single, slowly varying `bulge', symmetric in the longitudinal direction. Extending the work in Biggs (2012), we first employ a WKBJ-type ansatz to identify the possible quasi-mode solutions which propagate only in the thicker region, and hence find a finite cut-on region of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to identify a turning point between the cut-on and cut-on regions. We note that the expansions are nonuniform in an interior layer centred on this point, and we use the method of matched asymptotic expansions to connect the cut-on and cut-on regions within this layer. The behaviour of the expansions within the interior layer then motivates the construction of a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the waveguide around the longitudinal centre, x = 0, to extract trapped mode wavenumbers, which are compared with those found using a numerical scheme and seen to be extremely accurate, even to relatively large values of the small parameter.
Resumo:
A form of three-dimensional X-ray imaging, called Object 3-D, is introduced, where the relevant subject material is represented as discrete ‘objects’. The surface of each such object is derived accurately from the projections of its outline, and of its other discontinuities, in about ten conventional X-ray views, distributed in solid angle. This technique is suitable for many applications, and permits dramatic savings in radiation exposure and in data acquisition and manipulation. It is well matched to user-friendly interactive displays.
Resumo:
An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.
Resumo:
We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of the VT of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. For weak noise, the mean area of the perturbed BCC and FCC crystals VT increases quadratically with a. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate noise (a>0.5), the properties of the three perturbed VT are indistinguishable, and for intense noise (a>2), results converge to the Poisson-VT limit. Notably, 2-parameter gamma distributions are an excellent model for the empirical of of all considered properties. The VT of the perturbed BCC and FCC structures are local maxima for the isoperimetric quotient, which measures the degre of sphericity of the cells, among space filling VT. In the BCC case, this suggests a weaker form of the recentluy disproved Kelvin conjecture. Due to the fluctuations of the shape of the cells, anomalous scalings with exponents >3/2 is observed between the area and the volumes of the cells, and, except for the FCC case, also for a->0. In the Poisson-VT limit, the exponent is about 1.67. As the number of faces is positively correlated with the sphericity of the cells, the anomalous scaling is heavily reduced when we perform powerlaw fits separately on cells with a specific number of faces.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.
Resumo:
During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.