935 resultados para Three-Dimensional Material Model
Resumo:
"Task 9R99-005-04. Contract DA 44-177-TC-710."
Resumo:
"Work performed for the Air Force Flight Dynamics Laboratory...by the Aerodynamics Research Department of the Northrup Corporation, Aircraft Division."
Resumo:
Mode of access: Internet.
Resumo:
"Final report."
Resumo:
"This report is based on research sponsored by the U.S. Navy through the Office of Naval Research, Contract Nonr-2653(00)"
Resumo:
Unclassified.
Resumo:
Research carried out under Naval Ship Systems Command, General Hydromechanics Research Program, subproject SR 009 01 01, administered by the Naval Ship Research and Development Center, contract no. N00014-67-A-0220-0003.
Resumo:
Bibliography: p. 77-83.
Resumo:
This project investigates the correlation between contaminants and the wood waste present in marine sediments off the shore of the Port of Everett in the former Weyerhaeuser Mill-A pulp mill site. The investigation includes the results of two field studies, which tested contaminant levels in 22 boreholes as well as several surface samples. The contaminants include heavy metals and wood waste byproducts. These results, along with 14 other bore logs, provide the framework for a three-dimensional site model, interpolating the full extent of the depositional units and organic and inorganic chemicals found at Mill-A. The sediments of interest are divided into five depositional units defined by the percent wood content and type of wood: native material (<5% wood), intermediate (<30% wood), sawdust (<30% wood), woodchips (<30% wood), and poorly sorted sands with silt (SM-SP) (0% wood). The contaminants include arsenic, 2,4-dimethylphenol, and total organic carbon. Three-dimensional modeling software, RockWorks, interpolated the discrete borehole data of sediment and contaminants assuming horizontal continuity between sampling locations. The sediment distribution was calculated within concentration ranges for each contaminant of concern. The lowest detection limits, the screening levels, and the cleanup levels defined these ranges. Total organic carbon served as a proxy to estimate the quantity of wood waste in the sediment. As a known byproduct of wood decomposition, 2,4-dimethylphenol was expected to be more prevalent in the depositional units with more wood waste. Finally, arsenic was a proxy for other contaminants to determine if contaminants at Mill-A are dominant in sediments with high percentages of wood waste. The volumetric distribution established that high levels of total organic carbon are present in the sediment with higher percentages of wood waste. This correlation was stronger in the decomposing sawdust-rich sediment than the woodchip-rich sediment. The 2,4-dimethylphenol concentrations above cleanup standards were dominant in the sawdust-rich, intermediate and native sediments. Concentrations of 2,4-dimethylphenol below cleanup levels characterized the native sediment. The distribution of arsenic showed no statistically significant correlation to wood content in sediment. These results do not support the hypothesis of contaminant-rich wood waste, as many of the high concentrations of contaminants were not in the wood-rich sediments. This suggests that the contaminants are more distributed among all depositional units at Mill-A rather than focused within sediments with a high percent of wood waste. Understanding the distribution of potentially toxic compounds with wood waste is important for restoring the Puget Sound waterways to a more habitable environment. Future studies should include new data to validate these results and to limit the uncertainty of the extent of contaminants. Future studies may also find motive in looking for a correlation between contaminants and grain size based on previous studies linking these characteristics. These investigations will benefit the current cleanup effort as well as future cleanup efforts at similarly contaminated waterways.
Resumo:
OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Recently, a 3-dimensional phantom that can provide a comprehensive, accurate and complete measurement of the geometric distortion in MRI has been developed. In this paper, a scheme for characterizing the measured geometric distortion using the 3-D phantom is described. In the proposed scheme, a number of quantitative measures are developed and used to characterize the geometric distortion. These measures encompass the overall and spatial aspects of the geometric distortion. Two specific types of volume of interest, rectangular parallelepipeds (including cubes) and spheres are considered in the proposed scheme. As an illustration, characterization of the geometric distortion in a Siemens 1.5T Sonata MRI system using the proposed scheme is presented. As shown, the proposed scheme provides a comprehensive assessment of the geometric distortion. The scheme can be potentially used as a standard procedure for the assessment of geometric distortion in MRI. (C) 2004 American Association of Physicists in Medicine.