942 resultados para Thin-layer models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The understanding of Galaxy evolution can be facilitated by the use of population synthesis models, which allow to test hypotheses on the star formation history, star evolution, as well as chemical and dynamical evolution of the Galaxy. Aims. The new version of the Besanc¸on Galaxy Model (hereafter BGM) aims to provide a more flexible and powerful tool to investigate the Initial Mass Function (IMF) and Star Formation Rate (SFR) of the Galactic disc. Methods. We present a new strategy for the generation of thin disc stars which assumes the IMF, SFR and evolutionary tracks as free parameters. We have updated most of the ingredients for the star count production and, for the first time, binary stars are generated in a consistent way. We keep in this new scheme the local dynamical self-consistency as in Bienayme et al (1987). We then compare simulations from the new model with Tycho-2 data and the local luminosity function, as a first test to verify and constrain the new ingredients. The effects of changing thirteen different ingredients of the model are systematically studied. Results. For the first time, a full sky comparison is performed between BGM and data. This strategy allows to constrain the IMF slope at high masses which is found to be close to 3.0, excluding a shallower slope such as Salpeter"s one. The SFR is found decreasing whatever IMF is assumed. The model is compatible with a local dark matter density of 0.011 M pc−3 implying that there is no compelling evidence for significant amount of dark matter in the disc. While the model is fitted to Tycho2 data, a magnitude limited sample with V<11, we check that it is still consistent with fainter stars. Conclusions. The new model constitutes a new basis for further comparisons with large scale surveys and is being prepared to become a powerful tool for the analysis of the Gaia mission data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to find out the suitability of foam as medium in application of thin liquid films. This consists of research over phenomena related to foam physics and behaviour. Solutions and mixtures to be foamed, foaming agents, foam generation and application methods were evaluated. Over the evaluated solutions and mixtures coating paste and CMC did not foam well. Latex and PVA solutions were foamable and the best solution for foam use was starch. PVA and casein can be used as foaming agents, but the best results were achieved with sodium dodecyl sulphate (SDS). SDS works well with starch solutions producing fine and stable foam. Foaming was done with simple mixers where pressurized air was fed to the solution. The foaming works fine when enough shear force is used together with sufficient foaming agent concentration. Foam application with curtain, rod and cylinder methods with a gap between the application device and paper were not usable because of high coating amount. Coating amounts were smallest with the blade method which achieved 0.9 g/m2 starch layer. Although some strength decrease was expected because of the foaming agent, it dit not have significant effect. The targeted coating amount of 0.5 g/m2 was not achieved due to the limitations with the methods. More precise foam application methods are needed. Continuous foam generation and feed to the paper surface with controllable device such as application teeth could improve the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, Sr2FeMoO6 (SFMO) thin films were studied with the main focus on their magnetic and magneto-transport properties. The fabrication process of pulsed laser deposited SFMO films was first optimized. Then the effects of strain, film thickness and substrate were thoroughly investigated. In addition to these external factors, the effect of intrinsic defects on the magnetic properties of SFMO were also clarified. Secondly, the magnetoresistivity mechanims of SFMO films were studied and a semiempirical model of the temperature dependence of resistivity was introduced. The films were grown on single crystal substrates using a ceramic target made with sol-gel method. The structural characterization of the films were carried out with X-ray diffraction, atomic force microscopy, transmission electron microscopy and high kinetic energy photoelectron spectroscopy. The magnetic properties were measured with SQUID magnetometer and the magneto-transport properties by magnetometer with a resistivity option. SFMO films with the best combination of structural and magnetic properties were grown in Ar atmosphere at 1050 °C . Their magnetic properties could not be improved by the ex situ post-annealing treatments aside from the treatments in ultra-high vacuum conditions. The optimal film thickness was found to be around 150 nm and only small improvement in the magnetic properties with decreasing strain was observed. Instead, the magnetic properties were observed to be highly dependent on the choice of the substrate due to the lattice mismatch induced defects, which are best avoided by using the SrTiO3 substrate. The large difference in the Curie temperature and the saturation magnetization between the SFMO thin film and polycrystalline bulk samples was connected to the antisite disorder and oxygen vacancies. Thus, the Curie temperature of SFMO thin films could be improved by increasing the amount of oxygen vacancies for example with ultra-high vacuum treatments or improving the B-site ordering by further optimization of the deposition parameters. The magneto-transport properties of SFMO thin films do not follow any conventional models, but the temperature dependence of resistivity was succesfully described with a model of two spin channel system. Also, evidences that the resistivity-temperature behaviour of SFMO thin films is dominated by the structural defects, which reduce the band gap in the majority spin band were found. Moreover, the magnetic field response of the resistivity in SFMO thin films were found to be superposition of different mechanisms that seems to be related to the structural changes in the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interior layered deposit (ILD) in Ganges Chasma, Valles Marineris, is a 4.25 km high mound that extends approximately 110 km from west to east. The deposition, deformation, and erosion history of the Ganges ILD records aids in identifying the processes that formed and shaped the Chasma. To interpret structural and geomorphic processes acting on the ILD, multiple layer attitudes and layer thickness transects were conducted on the Ganges ILD. Mineralogical data was analyzed to determine correlations between materials and landforms. Layer thickness measurements indicate that the majority of layers are between 0.5 m and 4 m throughout the ILD. Three major benches dominate the Ganges ILD. Layer thicknesses increase at the ILD benches, suggesting that the benches are formed from the gradual thickening of layers. This indicates that the benches are depositional features draping over basement topography. Layer attitudes indicate overall shallow dips generally confined to a North-South direction that locally appear to follow bench topography. Layering is disrupted on a scale of 40 m to 150 m in 12 separate locations throughout the ILD. In all locations, underlying layering is disturbed by overlying folded layers in a trough-like geometry. These features are interpreted to have formed as submarine channels in a lacustrine setting, subsequently infilled by sediments. Subsequently, the channels were eroded to the present topography, resulting in the thin, curved layering observed. Data cannot conclusively support one ILD formation hypothesis, but does indicate that the Ganges ILD postdates Chasma formation. The presence of water altered minerals, consistently thin layering, and layer orientations provide strong evidence that the ILD formed in a lacustrine setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the scope of the current thesis we review and analyse networks that are formed by nodes with several attributes. We suppose that different layers of communities are embedded in such networks, besides each of the layers is connected with nodes' attributes. For example, examine one of a variety of online social networks: an user participates in a plurality of different groups/communities – schoolfellows, colleagues, clients, etc. We introduce a detection algorithm for the above-mentioned communities. Normally the result of the detection is the community supplemented just by the most dominant attribute, disregarding others. We propose an algorithm that bypasses dominant communities and detects communities which are formed by other nodes' attributes. We also review formation models of the attributed networks and present a Human Communication Network (HCN) model. We introduce a High School Texting Network (HSTN) and examine our methods for that network.