976 resultados para TEMPERATURE-DEPENDENCE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of crystallinity and polymorphism during hot-drawing of amorphous poly(ether ether ketone ketone) (PEEKK) as a function of strain rate, draw ratio, and temperature was investigated. In modification I, the competition of chain extension and molecular alignment is responsible for the strain rate and temperature dependence. Modification II crystallization is basically controlled by chain extension during stretching. The former can be transformed into the latter via relaxation during stretching or annealing at elevated temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystal structure and polymorphism induced by uniaxial drawing of a poly(aryl ether ketone) [PEDEKmK] prepared from 1,3-bis(4-fluorobenzoyl)benzene and biphenyl-4,4'-diol have been investigated by means of transmission electron microscopy (TEM), electron diffraction (ED), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) techniques. The melting and recrystallization process in the temperature range of 250-260 degrees C, far below the next melting temperature (306 degrees C), was identified and found to be responsible for the remarkable changes in lamellar morphology. Based on WAXD and ED patterns, it was found that crystal structure of isotropic-crystalline PEDEKmK obtained under different crystallization conditions (melt-crystallization, cold-crystallization, solvent-induced crystallization, melting-recrystallization, and crystallization from solution) keeps the same mode of packing, i.e., a two-chain orthorhombic unit cell with the dimensions a = 0.784 nm, b = 0.600 nm, and c = 4.745 nm (form I). A second crystal modification (form II) can be induced by uniaxial drawing above the glass transition temperature, and always coexists with form I. This form also possesses an orthorhombic unit cell but with different dimensions, i.e., a = 0.470 nm, b = 1.054 nm, c = 5.064 nm. The 0.32 nm longer c-axis of form II as compared with form I is attributed to an overextended chain conformation due to the expansion of ether and ketone bridge bond angles during uniaxial drawing. The temperature dependence of WAXD patterns for the drawn PEDEKmK suggests that form II can be transformed into the more stable form I by relaxation of overextended chains and relief of internal stress at elevated temperature in absence of external tension.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

C-13 and H-1 relaxation times were measured as a function of temperature in two magnetic fields for dilute solutions of phenolphthalein poly(ether sulfone) (PES-C) in deuterated chloroform. The spin-lattice relaxation times were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (J. S. model). The phenyl group rotation is treated as a stochastic diffusion by the J. S. model. The restricted butterfly motion of the phenyl group attached to the cardo ring in PES-C is mentioned but is not discussed in detail in this work. Correlation times for the segmental motion are in the picosecond range which indicates the high flexibility of PES-C chains. The correlation time for the phenyl group internal rotation is similar to that of the segmental motion. The temperature dependence of these motions is weak. The apparent activation energy of the motions considered is less than 10 kJ/mol. The simulating results for PES are also reasonable considering the differences in structure compared with PES-C. The correlation times and the apparent activation energy obtained using the J. S. model for the main chain motion of PES-C are the same as those obtained using the damped orientational diffusion model and the conformational jump model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the synthesis of the AgLnMo(2)O(8) oxides with Ln = La-Nd, Sm, Gd, Tb and Y. These compounds represent a scheelite-related structure type characterized by MoO42- tetrahedrons. The IR spectra show three transmittance bands in the region of 1000-400 cm(-1), which correspond respectively to the nu(1), nu(2), and nu(3) modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) are insulator materials at room temperature. The temperature dependence of the magnetic susceptibilities of AgLnMo(2)O(8) (Ln = Ce-Nd, Sm, Gd, Tb) show Curie-Weiss Law behaviors with two anomalies occurring at low temperature, whereas AgLaMo2O8 and AgYMo2O8 both exhibit diamagnetic properties as expected. The magnetic moments at room temperature fit very well with those corresponding to rare earth sesquioxides. This suggests that rare earth ions exist in +3 oxidation state in all AgLnMo(2)O(8) compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ion salvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel-type polymer electrolytes were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) decreases and that of triple ions (alpha(i)) increases linearly with increasing LiClO4 concentration, while for ion pairs, as the salt concentration increases, its fraction (alpha(p)) increases first and then falls down. The findings can be rationalized by the fact that the ionic conductance of the polymer electrolyte may be mainly contributed by triple ions and higher ionic aggregates with unequal numbers of positive and negative charges in the salt concentration range of practical significance, i.e. in the range of 0.5-1.5 mol/l. The temperature dependence of these fractions was also examined. In the case of tetraethylene glycol as the solvent, alpha(i) and alpha(p) increase as the temperature is raised, but alpha(t) decreases as the temperature increases from 25 degrees C to 85 degrees C. It seems that the increase of alpha(i) and alpha(p) results from the redissociation of triple ions at higher temperature, The same changing trend of those fractions is also observed when PEG(400) is used as the solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the synthesis of AgLnMo(2)O(8) compounds with Ln = La-Nd and Sm. These compounds represent a scheelite-type structure characterized by MoO4- tetrahedrons. IR spectra show five absorption peaks in the region of 1000-400cm(-1), around 800cm(-1) and 400cm(-1), which correspond to the modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) (Ln = La-Nd and Sm) oxides are dielectric materials at room temperature. The temperature dependence of the magnetic susceptibility ofAgLnMo(2)O(8) (Ln = Ce-Nd and Sm) shows Curie-Weiss law behavior from 100K to 300K. This indicates that both Ce and Pr exist in +3 oxidation state in AgLnMo(2)O(8). For AgLaMo2O8, diamagnetic properties are found as expected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compound La2MoO5 has a cubic fluorite symmetry. There is strong interaction between the two molybdenum ions (IV). The cubic-La2MoO5 oxide contains separated Mo2O8 clusters and is a semiconductor. The electrical resistivity measurement shows a semiconductor-metal transition around 250 degrees C. Temperature dependence of magnetic susceptibility represents the Curie-Weiss law. The compound La2MoO5 exhibits a paramagnetic behaviour from 170-250 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to stress relaxation curves of phenolphthalein poly(ether ketone) (PEK-C) at different temperatures and the principle of time-temperature equivalence, the master curves of PEK-C at arbitrary reference temperatures are obtained. A coupling model (Kohlrausch-Williams-Watts) is applied to explain quantitatively the different temperature dependence of stress relaxation behavior and the relationship between stress relaxation and yield phenomenon is established through the coupling model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Izod impact fracture behaviour of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a temperature range from room temperature to 240 degrees C by using an instrumented impact tester. The temperature dependence of the maximum load, total impact energy, initiation energy, propagation energy, ductility index (DI) and the relationships between these parameters and the relaxation processes have been investigated.