959 resultados para Supersymmetric Standard Model
Resumo:
We examine the potentiality of both CERN LEP and Fermilab Tevatron colliders to establish bounds on new couplings involving the bosonic sector of the standard model. We pay particular attention to the anomalous Higgs interactions with γ, W±, and Z0. A combined exclusion plot for the coefficients of different anomalous operators is presented. The sensitivity that can be achieved at the Next Linear Collider and at the upgraded Tevatron is briefly discussed. ©1999 The American Physical Society.
Resumo:
In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a 1/r3 behavior of the potential for the exchange of very light pseudoscalars and a 1/r7 dependence if the pseudoscalars are true massless Goldstone bosons. ©1999 The American Physical Society.
Resumo:
Flavor changing (FC) neutrino-matter interactions can account for the zenith-angle-dependent deficit of atmospheric neutrinos observed in the SuperKamiokande experiment, without directly invoking either neutrino mass or mixing. We find that FC ν μ-matter interactions provide a good fit to the observed zenith angle distributions, comparable in quality to the neutrino oscillation hypothesis. The required FC interactions arise naturally in many attractive extensions of the standard model. © 1999 The American Physical Society.
Resumo:
We show that the Higgs resonance can be amplified in a 3-3-1 model with a multi-Higgs-boson leptophilic scalar sector. This would allow the observation of the Higgs particle in muon colliders even for Higgs boson masses considerably higher than the ones expected to be seen in the electroweak standard model framework. ©1999 The American Physical Society.
Resumo:
In this work we study the structure of electromagnetic interactions and electric charge quantization in gauge theories of electroweak interactions based on semisimple groups. We show that in the standard model of electroweak interactions the structure of electromagnetic interactions is strongly correlated to the quantization pattern of electric charges. We examine these two questions also in all possible chiral bilepton gauge models of electroweak interactions. In all, we can explain the vectorlike nature of electromagnetic interactions and electric charge quantization together demanding nonvanishing fermion masses and anomaly cancellations. ©1999 The American Physical Society.
Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes
Resumo:
Final-state qq̄ interactions give origin to nonzero values of the off-diagonal element ρ1,-1 of the helicity density matrix of vector mesons produced in e+e- annihilations, as has been confirmed by recent OPAL data on φ, D*, and K*. New predictions are given for ρ1,-1 of several mesons produced at large XE and small pT - i.e., collinear with the parent jet - in the annihilation of polarized e+ and e-; the results depend strongly on the elementary dynamics and allow further nontrivial tests of the standard model.
Resumo:
We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z → bb width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R(b) agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Δg(Z)/1 and g(Z)/5 are most stringent than the present direct bounds on these quantities, while the indirect limit on λ(Z) is weaker than the available experimental data.
Resumo:
We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.
Resumo:
Dijet production at the Tevatron including effects of virtual exchanges of spin-2 Kaluza-Klein modes in theories with large extra dimensions is considered. The experimental dijet mass and angular distribution are exploited to obtain stringent limits (> 1.2TeV) on the effective string scale M s.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.
Resumo:
We present a measurement of the top quark pair (tt̄) production cross section in pp̄ collisions at √s=1.96 TeV using events with two charged leptons in the final state. This analysis utilizes an integrated luminosity of 224-243 pb-1 collected with the DØ detector at the Fermilab Tevatron Collider. We observe 13 events in the e+e -, eμ and μ+μ- channels with an expected background of 3.2±0.7 events. For a top quark mass of 175 GeV, we measure a tt̄ production cross section of σtt̄=8. 6-2.7 +3.2(stat)±1.1(syst)±0.6(lumi) pb, consistent with the standard model prediction. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We analyze double Higgs boson production at the LHC in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, so this mode provides a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model. © 2006 American Institute of Physics.
Resumo:
We analyze double Higgs boson production at the Large Hadron Collider in the context of Little Higgs models. In double Higgs production, the diagrams involved are directly related to those that cause the cancellation of the quadratic divergence of the Higgs self-energy, providing a robust prediction for this class of models. We find that in extensions of this model with the inclusion of a so-called T-parity, there is a significant enhancement in the cross sections as compared to the Standard Model. © SISSA 2006.
Resumo:
We present a search for associated Higgs boson production in the process pp̄→WH→WWW*→l±νl′±ν′ +X in final states containing two like-sign isolated electrons or muons (e±e±, e±μ±, or μ±μ±). The search is based on D0 run II data samples corresponding to integrated luminosities of 360-380pb-1. No excess is observed over the predicted standard model background. We set 95% C.L. upper limits on σ(pp̄→WH) ×Br(H→WW*) between 3.2 and 2.8 pb for Higgs boson masses from 115 to 175 GeV. © 2006 The American Physical Society.