874 resultados para Summer employment
Resumo:
The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.
Resumo:
The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.
Resumo:
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.
Resumo:
This study investigates the change of the El Niño–Southern Oscillation (ENSO)-South Asian summer monsoon interaction in response to a weakened Atlantic thermohaline circulation (THC) by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the weakened THC leads to intensified ENSO-South Asian summer monsoon relationship and enhanced South Asian summer monsoon interannual variability. Furthermore, it is suggested that this intensification of the ENSO-monsoon relationship is likely due to the enhanced ENSO variability induced by the weakened THC. This study indicates that the low frequency fluctuation of Atlantic SSTs might have an influence on South Asian summer monsoon interannual variability and the ENSO-monsoon interaction, and suggests a nonlocal mechanism for the observed decadal-multidecadal modulation of ENSO-monsoon relationship.
Resumo:
This paper shows how the rainfall distribution over the UK, in the three major events on 13-15 June, 25 June and 20 July 2007, was related to troughs in the upper-level flow, and investigates the relationship of these features to a persistent large-scale flow pattern which extended around the northern hemisphere and its possible origins. Remote influences can be mediated by the propagation of large-scale atmospheric waves across the northern hemisphere and also by the origins of the air-masses that are wrapped into the developing weather systems delivering the rain to the UK. These dynamical influences are examined using analyses and forecasts produced by a range of atmospheric models.
Resumo:
Changes to the behaviour of subseasonal precipitation extremes and active-break cycles of the Indian summer monsoon are assessed in this study using pre-industrial and 2 × CO2 integrations of the Hadley Centre coupled model HadCM3, which is able to simulate the monsoon seasonal cycle reasonably. At 2 × CO2, mean summer rainfall increases slightly, especially over central and northern India. The mean intensity of daily precipitation during the monsoon is found to increase, consistent with fewer wet days, and there are increases to heavy rain events beyond changes in the mean alone. The chance of reaching particular thresholds of heavy rainfall is found to approximately double over northern India, increasing the likelihood of damaging floods on a seasonal basis. The local distribution of such projections is uncertain, however, given the large spread in mean monsoon rainfall change and associated extremes amongst even the most recent coupled climate models. The measured increase of the heaviest precipitation events over India is found to be broadly in line with the degree of atmospheric warming and associated increases in specific humidity, lending a degree of predictability to changes in rainfall extremes. Active-break cycles of the Indian summer monsoon, important particularly due to their effect on agricultural output, are shown to be reasonably represented in HadCM3, in particular with some degree of northward propagation. We note an intensification of both active and break events, particularly when measured against the annual cycle, although there is no suggestion of any change to the duration or likelihood of monsoon breaks. Copyright © 2009 Royal Meteorological Society
Resumo:
Variability in aspects of the hydrological cycle over the Europe-Atlantic region during the summer season is analysed for the period 1979-2007, using observational estimates, reanalyses and climate model simulations. Warming and moistening trends are evident in observations and models although decadal changes in water vapour are not well represented by reanalyses, including the new European Centre for Medium Range Weather Forecasts (ECMWF) Interim reanalysis. Over the north Atlantic and northern Europe, observed water vapour trends are close to that expected from the temperature trends and Clausius-Clapeyron equation (7% K-1), larger than the model simulations. Precipitation over Europe is dominated by large-scale dynamics with positive phases of the North Atlantic Oscillation coinciding with drier conditions over north Europe and wetter conditions over the Mediterranean region. Evaporation trends over Europe are positive in reanalyses and models, especially for the Mediterranean region (1-3% per decade in reanalyses and climate models). Over the north Atlantic, declining precipitation combined with increased moisture contributed to an apparent rise in water vapour residence time. Maximum precipitation minus evaporation over the north Atlantic occurred during summer 1991, declining thereafter.
Resumo:
A university degree is effectively a prerequisite for entering the archaeological workforce in the UK. Archaeological employers consider that new entrants to the profession are insufficiently skilled, and hold university training to blame. But university archaeology departments do not consider it their responsibility to deliver fully formed archaeological professionals, but rather to provide an education that can then be applied in different workplaces, within and outside archaeology. The number of individuals studying archaeology at university exceeds the total number working in professional practice, with many more new graduates emerging than archaeological jobs advertised annually. Over-supply of practitioners is also a contributing factor to low pay in archaeology. Steps are being made to provide opportunities for vocational training, both within and outside the university system, but archaeological training and education within the universities and subsequently the archaeological labour market may be adversely impacted upon by the introduction of variable top-up student fees.