1000 resultados para String quintets (Violins (2), viola, violoncellos (2))
Resumo:
New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
A computational study of the isomers of tetrafluorinated [2.2]cyclophanes persubstituted in one ring, namely F-4-[2.2]paracyclophane (4), F-4-anti-[2.2]metacyclophane (5a), F-4-syn-[2.2]metacyclophane (5b), and F-4-[2.2]metaparacyclophane (6a and 6b), was carried out. The effects of fluorination on the geometries, relative energies, local and global aromaticity, and strain energies of the bridges and rings were investigated. An analysis of the electron density by B3PW91/6-31+G(d,p), B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) was carried out using the natural bond orbitals (NBO), natural steric analysis (NSA), and atoms in molecules (AIM) methods. The analysis of frontier molecular orbitals (MOs) was also employed. The results indicated that the molecular structure of [2.2]paracyclophane is the most affected by the fluorination. Isodesmic reactions showed that the fluorinated rings are more strained than the nonfluorinated ones. The NICS, HOMA, and PDI criteria evidenced that the fluorination affects the aromaticity of both the fluorinated and the nonfluorinated rings. The NBO and NSA analyses gave an indication that the fluorination increases not only the number of through-space interactions but also their magnitude. The AIM analysis suggested that the through-space interactions are restricted to the F-4-[2.2]metacyclophanes. In addition, the atomic properties, computed over the atomic basins, shave evidence that not only the substitution, but also the position of the bridges could affect the atomic charges. the first atomic moments, and the atomic volumes.
Resumo:
The influence of the preparation method on the performance of RuO(2)-Ta(2)O(5) electrodes was evaluated toward the ethanol oxidation reaction (EOR). Freshly prepared RuO(2)-Ta(2)O(5) thin films containing between 30 and 80 at.% Ru were prepared by two different methods: the modified Pechini-Adams method (DPP) and standard thermal decomposition (STD). Electrochemical investigation of the electrode containing RuO(2)-Ta(2)O(5) thin films was conducted as a function of electrode composition in a 0.5-mol dm(-3) H(2)SO(4) solution, in the presence and absence of ethanol and its derivants (acetaldehyde and acetic acid). At a low ethanol concentration (5 mmol dm(-3)), ethanol oxidation leads to high yields of acetic acid and CO(2). On the other hand, an increase in ethanol concentration (15-1000 mmol dm(-3)) favors acetaldehyde formation, so acetic acid and CO(2) production is hindered, in this case. Electrodes prepared by DPP provide higher current efficiency than STD electrodes for all the investigated ethanol concentrations. This may be explained by the increase in electrode area obtained with the DPP preparation method compared with STD. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.
Resumo:
A highly efficient two-step method for the synthesis of pyranoquinoline derivatives from imino-Diels-Alder reactions between aldimines and 3,4-dihydro-2H-pyran using niobium(V) chloride as catalyst under mild conditions is described.
Resumo:
Reactions of the model acylium ion (CH3)(2)N-C+=O with acyclic, exocyclic, and Spiro acetals of the general formula (RO)-O-1-(CRR4)-R-3-OR2-upole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [(RO-)-O-1 and (RO-)-O-2] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R-3 or R-4 substituents and (b) OH- abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.
Resumo:
Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO(2)-Ta(2)O(5) thin films containing between 10 and 90 at.% Ru were prepared by the Pechini-Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO(2) and orthorhombic structure for Ta(2)O(5). XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm(-2) in 80 degrees C 0.5 mol dm(-3) H(2)SO(4). The performance of electrodes prepared by the Pechini-Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters,. but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.
Resumo:
The (2,3)J(CH) dependence on dihedral angle (theta H-C-C-X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R-2 = 0.88). Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Luminescent Eu(3+) and Er(3+) doped SnO(2) powders have been prepared by Sn(4+) hydrolysis followed by a controlled growth reaction using a particle`s surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn(4+), for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu(3+) ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta dike-tonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO(2) single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 mu m planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.
Resumo:
The influence of the preparation method on the structural properties of the RuO(2)-Ta(2)O(5) system was investigated. Both thin films on Ti substrates and powder samples of nominal composition Ti/RuO(2)-Ta(2)O(5) (Ru:Ta = 100:0, 90:10, 80:20, 30:70, and 0:100 at.%) were prepared through thermal decomposition of polymeric precursors (DPP). The thin films and powder samples were investigated using X-ray absorption spectroscopy (XAS). XANES analyses showed that Ru and Ta are present in the Ru(IV) and Ta(V) oxidation states. EXAFS signals of all the samples were analyzed, to obtain the average bond length (r), coordination number, and the Debye-Waller factor (sigma(2)) for each Ru-O, Ru-Ru, Ta-O nearest-neighbor. The first shell Ru-O distance was found at 1.91-1.92 angstrom with coordination number of 1.8-2.1, and at 2.01-2.02 angstrom with coordination number of 3.9-4.1. The Ta-O distance obtained for all the samples and in both modes (transmission and fluorescence) had significantly different values from the theoretical ones. The results revealed that the local structure around both the Ru and Ta sites are similar, and that they consist of distorted M-O(6) octahedra (where M = Ru or Ta). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Luminescent and morphological studies of Sr(2)CeO(4) blue phosphor prepared from cerium-doped strontium oxalate precursor are reported Powder samples were prepared from 5 and 25 mol% Ce(3+)-doped strontium oxalate as well as from a mechanical mixture of strontium oxalate and cerium oxalate at a 4 1 ratio respectively All the samples were characterized by XRD IR PLS and SEM The luminescent and structural properties of the Sr(2)CeO(4) material are little affected by the SrCO(3) remaining from precursors The Sr(2)CeO(4) material consists in one-dimensional chains of edge-sharing CeO(6) octahedra that are linked together by Sr(2+) ions The carbonate ion might be associated with oxygen ions of the linear chain and also with the oxygen atoms located in the equatorial position which consequently affects the charge transfer bands between O(2-) and Ce(4+). As observed by SEM, the morphological changes are related to each kind of precursor and thermal treatment along with irregular powder particles within the size range 05-2 mu m (c) 2010 Elsevier B V All rights reserved
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.