860 resultados para Stochastic demand
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
Often, firms have no information on the specification of the true demand model they are faced with. It is, however, a well established fact that trial-and-error algorithms may be used by them in order to learn how to make optimal decisions. Using experimental methods, we identify a property of the information on past actions which helps the seller of two asymmetric demand substitutes to reach the optimal prices more precisely and faster. The property concerns the possibility of disaggregating changes in each product’s demand into client exit/entry and shift from one product to the other.
Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe
Resumo:
Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.
Resumo:
Demand Side Response (DSR) has been slow to emerge in European electricity markets. This paper aims to both examine the reasons for low levels of DSR in Europe and reflect on factors that might affect the participation of DSR in capacity mechanisms. It relies on available evidence from the literature, secondary data on existing DSR programmes and energy aggregator's data from industries participating in DSR. Findings show that changes to the duration of contracted loads under existing or new programmes might increase the penetration of DSR. The introduction of capacity mechanisms may increase DSR from demand turn down if longer response times were available.
Resumo:
It is increasingly important to know about when energy is used in the home, at work and on the move. Issues of time and timing have not featured strongly in energy policy analysis and in modelling, much of which has focused on estimating and reducing total average annual demand per capita. If smarter ways of balancing supply and demand are to take hold, and if we are to make better use of decarbonised forms of supply, it is essential to understand and intervene in patterns of societal synchronisation. This calls for detailed knowledge of when, and on what occasions many people engage in the same activities at the same time, of how such patterns are changing, and of how might they be shaped. In addition, the impact of smart meters and controls partly depends on whether there is, in fact scope for shifting the timing of what people do, and for changing the rhythm of the day. Is the scheduling of daily life an arena that policy can influence, and if so how? The DEMAND Centre has been linking time use, energy consumption and travel diary data as a means of addressing these questions and in this working paper we present some of the issues and results arising from that exercise.
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
Residential electricity demand in most European countries accounts for a major proportion of overall electricity consumption. The timing of residential electricity demand has significant impacts on carbon emissions and system costs. This paper reviews the data and methods used in time use studies in the context of residential electricity demand modelling. It highlights key issues which are likely to become more topical for research on the timing of electricity demand following the roll-out of smart metres.
Resumo:
Policy makers are in broad agreement that demand response should play a major role in EU electricity systems and provide much needed future system flexibility. Yet, little demand response has been forthcoming in member states to date. This paper identifies some of the technical potential for demand response, based on empirical data from one UK demand aggregator. Half-hourly electricity readings of demand during normal operation and during response events have been analysed for different industry and service sectors. We review these findings in the context of ongoing EU policy developments with particular focus on the role appropriate arrangements to enhance the available resource. We conclude that in some sectors appropriate policy and regulation could triple the available response capacity and thereby lead to stronger commercial uptake of demand response.
Resumo:
Methods of data collection are unavoidably rooted in some sort of theoretical paradigm, and are inextricably tied to an implicit agenda or broad problem framing. These prior orientations are not always explicit, but they matter for what data is collected and how it is used. They also structure opportunities for asking new questions, for linking or bridging between existing data sets and they matter even more when data is re-purposed for uses not initially anticipated. In this paper we provide an historical and comparative review of the changing categories used in organising and collecting data on mobility/travel and time use as part of ongoing work to understand, conceptualise and describe the changing patterns of domestic and mobility related energy demand within UK society. This exercise reveals systematic differences of method and approach, for instance in units of measurement, in how issues of time/duration and periodicity are handled, and how these strategies relate to the questions such data is routinely used to address. It also points to more fundamental differences in how traditions of research into mobility, domestic energy and time use have developed. We end with a discussion of the practical implications of these diverse histories for understanding and analysing changing patterns of energy/mobility demand at different scales.
Resumo:
This paper studies in- and out-migration from the U.S. during the first half of the twentieth century and assesses how these flows affected state-level labor markets. It shows that out-migration positively impacted the earnings growth of remaining workers, while in-migration had a negative impact. Hence, immigrant arrivals were substitutes of the existing workforce, while out-migration reduced the competitive pressure on labor markets
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
As satellite technology develops, satellite rainfall estimates are likely to become ever more important in the world of food security. It is therefore vital to be able to identify the uncertainty of such estimates and for end users to be able to use this information in a meaningful way. This paper presents new developments in the methodology of simulating satellite rainfall ensembles from thermal infrared satellite data. Although the basic sequential simulation methodology has been developed in previous studies, it was not suitable for use in regions with more complex terrain and limited calibration data. Developments in this work include the creation of a multithreshold, multizone calibration procedure, plus investigations into the causes of an overestimation of low rainfall amounts and the best way to take into account clustered calibration data. A case study of the Ethiopian highlands has been used as an illustration.
Resumo:
Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.