950 resultados para Steam Turbine
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Progetto di due turbine eoliche di piccola potenza per alimentare utenze remote. Sia la turbina ad asse verticale che quella ad asse orizzontale sono state dimensionate andando ad ottimizzare il funzionamento per un vento di 7.5 m/s ed un carico dato da un alternatore da 500W. Entrambe le turbine sono poi state modellate al CAD e sono stati realizzati i disegni costruttivi di alcuni elementi delle stesse.
Resumo:
This project concentrates on the Low Voltage Ride Through (LVRT) capability of Doubly Fed Induction Generator (DFIG) wind turbine. The main attention in the project is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. It provides also an overview on the interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of this project is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behavior of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by Transmission System Operator in the power system simulation toolbox Digsilent, Matlab/Simulink and PLECS.
Resumo:
L'idrogeno è un prodotto di grande importanza per l'industria chimica ed i processi di raffineria. Il 60% dell'intera produzione di idrogeno viene dal reforming del gas naturale. L'oxy-reforming è un processo che unisce la reazione di steam reforming a quella di ossidazione parziale e che ha dimostrato di avere molti vantaggi in termini di temperature molto più basse, minor volume di vapore alimentato con conseguente minori costi energetici e tempi di contatto sul catalizzatore. Per questo processo sono stati preparati, testati e caratterizzati catalizzatori a base di ossidi misti Ce-Zr impregnati con Rh. Particolare attenzione è stata posta all'effetto sulle prestazioni catalitiche del metodo di sintesi e della natura della fase costituente il supporto. Sperimentalmente è stato osservato che il catalizzatore il cui supporto è stato ottenuto via microemulsione ha una migliore attività rispetto al coprecipitato e che la fase ottimale corrisponde ad un rapporto Ce-Zr 0,5-0,5.
Resumo:
In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW). Finally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.
Resumo:
This paperwork compares the a numerical validation of the finite element model (FEM) with respect the experimental tests of a new generation wind turbine blade designed by TPI Composites Inc. called BSDS (Blade System Design Study). The research is focused on the analysis by finite element (FE) of the BSDS blade and its comparison with respect the experimental data from static and dynamic investigations. The goal of the research is to create a general procedure which is based on a finite element model and will be used to create an accurate digital copy for any kind of blade. The blade prototype was created in SolidWorks and the blade of Sandia National Laboratories Blade System Design Study was accurately reproduced. At a later stage the SolidWorks model was imported in Ansys Mechanical APDL where the shell geometry was created and modal, static and fatigue analysis were carried out. The outcomes of the FEM analysis were compared with the real test on the BSDS blade at Clarkson University laboratory carried out by a new procedures called Blade Test Facility that includes different methods for both the static and dynamic test of the wind turbine blade. The outcomes from the FEM analysis reproduce the real behavior of the blade subjected to static loads in a very satisfying way. A most detailed study about the material properties could improve the accuracy of the analysis.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.
Resumo:
A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes over flow conditions similar to that which would be experienced in the actual combustor. The results of this experiment were used to select the desired geometric parameters for the proposed final injector design and a CAD model was generated. Eventually, the new injector will be fabricated and tested to provide final validation of the design prior to use in the combustion test apparatus.
Resumo:
Research was to investigate the effects of increasing levels of carbon dioxide addition to the combustion of methane with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed.