848 resultados para Speckle reduction
Resumo:
This communication discusses the formation of doped nanobelts produced by a simple route. Tin-doped indium oxide (ITO) nanobelts were obtained by a carbothermal reduction method. The nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and wavelength-dispersive X-ray spectroscopy (WDX). The results show that the nanobelts have a cubic structure, are single crystalline and doped with tin and grow in the [400] direction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Physical parameters of different types of lenses were measured through digital speckle pattern interferometry (DSPI) using a multimode diode laser as light source. When such lasers emit two or more longitudinal modes simultaneously the speckle image of an object appears covered of contour fringes. By performing the quantitative fringe evaluation the radii of curvature as well as the refractive indexes of the lenses were determined. The fringe quantitative evaluation was carried out through the four- and the eight-stepping techniques and the branch-cut method was employed for phase unwrapping. With all these parameters the focal length was calculated. This whole-field multi-wavelength method does enable the characterization of spherical and aspherical lenses and of positive and negative ones as well. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
The experiment described evaluated the effect of a commercial in-feed preparation (Bio-Add™) involving a mixture of formic acid and propionic acid on the incidence of experimental fowl typhoid in groups of 41 and 42 1-wk-old Rhode Island Red chickens. The chickens were infected through contact with 12 identical chickens that had been inoculated orally with 10 8 cfu of Salmonella gallinarum strain 9. The incidence of mortality and morbidity due to fowl typhoid was 31/41 (76%) in birds given untreated feed and 14/42 (33%) in birds given feed treated with Bio-Add™.
Resumo:
In this paper we employ the construction of the Dirac bracket for the remaining current of sl(2) q deformed Kac-Moody algebra when constraints similar to those connecting the sl(2)-Wess-Zumino-Witten model and the Liouville theory are imposed to show that it satisfies the q-Virasoro algebra proposed by Frenkel and Reshetikhin The crucial assumption considered in our calculation is the existence of a classical Poisson bracket algebra induced in a consistent manner by the correspondence principle, mapping the quantum generators into commuting objects of classical nature preserving their algebra.
Resumo:
In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
In industrial processes using aqueous solutions, corrosion of metal surfaces may occur at various locations. Much of the damage to steam generators and boilers is caused by corrosion. Dissolved oxygen in water is one of the most potent corrosion-causing factors, and therefore oxygen should be eliminated from steam-generating systems' feedwater. Chemical reduction, by reagents such as hydrazine or organic compounds, generally is used for the deoxygenation of water. This article reviews the major oxygen scavengers currently available.