975 resultados para Solids suspension
Resumo:
Purpose: This study analyzed the surface roughness and weight loss in Plex Glass specimens caused by dentifrices, one conventional (Sorriso) and three specific for dentures. Materials and Methods: Specimens (n = 6) of Plex Glass were divided into 5 groups including: negative control (water); positive control 1 (Sorriso) and 2 (Corega Brite); Experimental 1 (containing Chloramine T, antimicrobial agent); and Experimental 2 (containing Zonyl, detergent). Brushing was performed in a toothbrushing machine (Pepsodent) with a soft brush and a suspension of toothpaste and distilled water for 300 minutes, representing 6 years of brushing. Weight was measured initially and after the trial period; roughness was measured after the trial period only. The results of roughness and weight loss were analyzed using ANOVA and Tukey tests at 5%. Results: The negative control (2.82 +/- 4.41 mg) showed the lowest weight loss. Experimental 1 (13.62 +/- 4.29 mg) and Experimental 2 (15.4 +/- 5.80 mg) were equal statistically, and Sorriso (23.22 +/- 7.23 mg) and Corega (28.83 +/- 6.34 mg) produced the greatest weight loss. Concerning roughness, the negative control group (0.03 +/- 0.01 mu m) showed the lowest value. No significant differences were found between Corega (13.43 +/- 1.65 mu m), Experimental 1 (12.28 +/- 0.85 mu m), and Experimental 2 (10.68 +/- 2.56 mu m). The Sorriso toothpaste produced the greatest amount of surface roughness (19.15 +/- 2.36 mu m). Conclusion: Of the tested dentifrices, the experimental preparations proved to be the least abrasive and resulted in the lowest weight loss after brushing of the acrylic. Based on these findings, the use of these experimental dentifrices is advocated. Further evaluation based on the ability of these preparations to remove biofilms is required.
Resumo:
This article modifies the usual form of the Dubinin-Radushkevich pore-filling model for application to liquid-phase adsorption data, where large molecules are often involved. In such cases it is necessary to include the repulsive part of the energy in the micropores, which is accomplished here by relating the pore potential to the fluid-solid interaction potential. The model also considers the nonideality of the bulk liquid phase through the UNIFAC activity coefficient model, as well as structural heterogeneity of the carbon. For the latter the generalized adsorption integral is used while incorporating the pore-size distribution obtained by density functional theory analysis of argon adsorption data. The model is applied here to the interpretation of aqueous phase adsorption isotherms of three different esters on three commercial activated carbons. Excellent agreement between the model and experimental data is observed, and the fitted Lennard-Jones size parameter for the adsorbate-adsorbate interactions compares well with that estimated from known critical properties, supporting the modified approach. On the other hand, the model without consideration of bulk nonideality, or when using classical models of the characteristic energy, gives much poorer bts of the data and unrealistic parameter values.
Resumo:
The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.
Resumo:
Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.
Resumo:
Titania sol-pillared clay (TiO2 PILC) and silica-titania sol-pillared clay (SiO2-TiO2 PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO2 PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO2-TiO2 PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. (C) 2001 Academic Press.
Resumo:
Symptoms of bladder irritability are common after incontinence surgery but their cause is unknown. This study tests the hypothesis that irritative symptoms after colposuspension are due to distortion of the trigone. As part of longitudinal follow-up studies, 175 women were examined 6 months to 12 years after either an open or a laparoscopic Burch colposuspension. The main outcome measures were symptoms of bladder irritability (frequency, nocturia and urge incontinence) and ultrasound findings (bladder neck position at rest and on Valsalva, the presence of a colposuspension ridge, ridge depth and ridge distance, and trigonal angle). Two positive associations between ultrasound parameters and symptoms of bladder irritability were observed: urge incontinence was more likely in the presence of bladder neck funneling, and women with nocturia had a higher trigonal angle. Increased distortion of the trigone was associated with a reduced incidence of urge incontinence in the subgroup of patients after laparoscopic colposuspension. The data presented in this study do not support the hypothesis that symptoms of bladder irritability are due to trigonal distortion or overelevation.
Resumo:
The effects of the mode of exposure of second instar Colorado potato beetles to Beauveria bassiana on conidia acquisition and resulting mortality were investigated in laboratory studies. Larvae sprayed directly with a B, bassiana condial suspension, larvae exposed to B, bassiana-treated foliage, and larvae both sprayed and exposed to treated foliage experienced 76, 34, and 77% mortality, respectively. The total number of conidia and the proportion of germinating conidia were measured over time for four sections of the insect body: the ventral surface of the head (consisting mostly of ventral mouth parts), the ventral abdominal surface, the dorsal abdominal surface, and the legs. From observations at 24 and 36 h posttreatment, mean totals of 161.1 conidia per insect were found on sprayed larvae, 256.1 conidia on larvae exposed only to treated foliage, and 408.3 conidia on larvae both sprayed and exposed to treated foliage, On sprayed larvae, the majority of conidia were found on the dorsal abdominal surface, whereas conidia were predominantly found in the ventral abdominal surface and mouth parts on larvae exposed to treated foliage, Between 24 and 36 h postinoculation the percentage of conidia germinating on sprayed larvae increased slightly from 80 to 84%), On the treated foliage, the percentage of germinated conidia on larvae increased from 35% at 24 h to 50% at 36 h posttreatment, Conidia germination on sprayed larvae on treated foliage was 65% at 24 h and 75% at 36 h posttreatment, It is likely that the gradual acquisition of conidia derived from the continuous exposure to B. bassiana inoculum on the foliar surface was responsible for the increase in germination over time on larvae exposed to treated foliage, The density and germination of conidia were observed 0, 4, 8, 12, 16, 20, and 24 h after being sprayed with or dipped in conidia suspensions or exposing insects to contaminated foliage, Conidia germinated twice as fast on sprayed insects as with any other treatment within the first 12 h, This faster germination may be due to the pressure of the sprayer enhancing conidial lodging on cuticular surfaces. (C) 2001 Academic Press.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Selected isolates of Cladosporium tenuissimum were tested for their ability to inhibit in vitro aeciospore germination of the two-needle pine stem rusts Cronartium flaccidum and Peridermium pini and to suppress disease development in planta. The antagonistic fungus displayed a number of disease-suppressive mechanisms. Aeciospore germination on water agar slides was reduced at 12, 18, and 24 h when a conidial suspension (1.5 x 10(7) conidia per ml) of the Cladosporium tenuissimum isolates was added. When the aeciospores were incubated in same-strength conidial suspensions for 1, 11, 21, and 31 days, viability was reduced at 20 and 4 degreesC. Light and scanning electron microscopy showed that rust spores were directly parasitized by Cladosporium tenuissimum and that the antagonist had evolved several strategies to breach the spore wail and gain access to the underlying tissues. Penetration occurred with or without appressoria. The hyperparasite exerted a mechanical force to destroy the spore structures (spinules, cell wall) by direct contact, penetrated the aeciospores and subsequently proliferated within them. However, an enzymatic action could also be involved. This was shown by the dissolution of the host tell wall that comes in contact with the mycelium of the mycoparasite, by the lack of indentation in the host wall at the contact site, and by the minimal swelling at the infecting hyphal tip. Culture filtrates of the hyperparasite inhibited germination of rust propagules. A compound purified from the filtrates was characterized by chemical and spectroscopic analysis as cladosporol, a known beta -1,3-glucan biosynthesis inhibitor. Conidia of Cladosporium tenuissimum reduced rust development on new infected pine seedlings over 2 years under greenhouse conditions. Because the fungus is an aggressive mycoparasite, produces fungicidal metabolites, and can survive and multiply in forest ecosystems without rusts, it seems a promising agent for the biological control of pine stem rusts in Europe.
Resumo:
The effects of conditioning and hot water treatments on immature and mature 'Kensington' mangoes were examined. A hot water treatment of 47 degreesC fruit core temperature held for 15 min increased weight loss (50%), fruit softness (15%), disrupted starch hydrolysis and interacted with maturity to reduce the skin yellowness (40-51%) of early harvested fruit. Immature fruit were more susceptible to hot water treatment-induced skin scalding, starch layer and starch spot injuries and disease. Conditioning fruit at 40 degreesC for up to 16 h before hot water treatment accelerated fruit ripening, as reflected in higher total soluble solids and lower titratable acidity levels. As fruit maturity increased, the tolerance to hot water treatment-induced skin scalding and the retention of starch layers and starch spots increased and susceptibility to lenticel spotting decreased. A conditioning treatment of either 22 degrees or 40 degreesC before hot water treatment could prevent the appearance of cavities at all maturity levels. The 40 degreesC conditioning temperature was found to be more effective in increasing fruit heat tolerance than the 22 degreesC treatment; the longer the time of conditioning at 40 degreesC, the more effective the treatment (16 v. 4 h). For maximum fruit quality, particularly for export markets, it is recommended that mature fruit are selected and conditioned before hot water treatment to reduce the risk of heat damage.
Resumo:
Tarramba leucaena (Leucaena leucocephala cv. Tarramba) foliage had per kilogram dry matter, 169 g protein and 29.8 g condensed tannins. Its value as a supplement, given either with or without urea, to sheep given a low-quality Callide Rhodes grass (Chloris gayana cv. Callide) hay was studied. Six rumen fistulated sheep (mean +/- s.d. liveweight, 34 +/- 1.4 kg) were used to compare 6 dietary treatments in an incomplete latin square design. Rhodes grass hay was given ad libitum either alone, or with urea 7 g/day (U), or with leucaena 150 g/day (L150), or leucaena with urea (L150U), or leucaena 300 g/day (L300), or leucaena with urea (L300U). Digestible organic matter intake was increased significantly by leucaena supplementation although digestibility of the whole diet did not alter. Rumen fluid ammonia-N was not altered by leucaena supplementation, but was increased by urea. This suggests that Tarramba foliage protein has some resistance to ruminal degradation. Liquid and solids passage rates were not affected by the treatments. Microbial nitrogen supply to the intestine (g/day), and the efficiency of microbial nitrogen synthesis (g/kg organic matter apparently digested in the rumen), were increased by leucaena supplementation (P
Resumo:
Plant morphogenesis in vitro can be achieved via two pathways, somatic embryogenesis or organogenesis. Relationships between the culture medium and explant leading to morphogenesis are complex and, despite extensive study, remain poorly understood. Primarily the composition and ratio of plant growth regulators are manipulated to optimize the, quality and numbers of embryos or organs initiated. However, many species and varieties do not respond to this classical approach and require further optimization by the variation of other chemical or physical factors. Mineral nutrients form a significant component of culture media but are often overlooked as possible morphogenic elicitors. The combination of minerals for a particular plant species and developmental pathway are usually determined by the empirical manipulation of one or a combination of existing published formulations. Often only one medium type is used for the duration of culture even though this formulation may not be optimal for the different stages of explant growth and development. Furthermore, mineral studies have often focused on growth rather than morphogenesis with very little known of the relationships between mineral uptake and morphogenesis. This article examines the present knowledge of the main effects that mineral nutrients have on plant morphogenesis in vitro. In particular, the dynamics of nitrogen, phosphorus, and calcium supply during development are discussed.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
The enormous amount of information generated through sequencing of the human genome has increased demands for more economical and flexible alternatives in genomics, proteomics and drug discovery. Many companies and institutions have recognised the potential of increasing the size and complexity of chemical libraries by producing large chemical libraries on colloidal support beads. Since colloid-based compounds in a suspension are randomly located, an encoding system such as optical barcoding is required to permit rapid elucidation of the compound structures. We describe in this article innovative methods for optical barcoding of colloids for use as support beads in both combinatorial and non-combinatorial libraries. We focus in particular on the difficult problem of barcoding extremely large libraries, which if solved, will transform the manner in which genomics, proteomics and drug discovery research is currently performed.