909 resultados para Solid state chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

he thermodynamic properties of the spinel Mg2SnO4 have been determined by emf measurements on the solid oxide galvanic cell,View the MathML source in the temperature range 600 to 1000°C. The Gibbs' free energy of formation of Mg2SnO4 from the component oxides can be expressed as View the MathML source,View the MathML source These values are in good agreement with the information obtained by Jackson et al. [Earth Planet. Sci. Lett.24, 203 (1974)] on the high pressure decomposition of magnesium stannate into component oxides at different temperatures. The thermodynamic data suggest that the spinel phase is entropy stabilized, and would be unstable below 207 (±25)°C at atmospheric pressure. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that the stannates of nickel and copper(II) are unstable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interesting topic for quite some time is an intermediate phase observed in chalcogenide glasses, which is related to network connectivity and rigidity. This phenomenon is exhibited by Si-Te-In glasses also. It has been addressed here by carrying out detailed thermal investigations by using Alternating Differential Scanning Calorimetry technique. An effort has also been made to determine the stability of these glasses using the data obtained from different thermodynamic quantities and crystallization kinetics of these glasses. Electrical switching behavior by recording I-V characteristics and variation of switching voltages with indium composition have been studied in these glasses for phase change memory applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The December 2011 release of a draft United States Food and Drug Administration (FDA) guidance concerning regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) addressed two matters of topical interest to the crystal engineering and pharmaceutical science communities: (1) a proposed definition of cocrystals; (2) a proposed classification of pharmaceutical cocrystals as dissociable ``API-excipient'' molecular complexes. The Indo U.S. Bilateral Meeting sponsored by the Indo-U.S. Science and Technology Forum titled The Evolving Role of Solid State Chemistry in Pharmaceutical Science was held in Manesar near Delhi, India, from February 2-4, 2012. A session of the meeting was devoted to discussion of the FDA guidance draft. The debate generated strong consensus on the need to define cocrystals more broadly and to classify them like salts. It was also concluded that the diversity of API crystal forms makes it difficult to classify solid forms into three categories that are mutually exclusive. This perspective summarizes the discussion in the Indo-U.S. Bilateral Meeting and includes contributions from researchers who were not participants in the meeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr1-xMnxTiO3 (where x=0.03, 0.05, 0.07 and 0.09) was synthesized via different routes that include solid-state, oxalate precipitation and freeze drying. In oxalate precipitation technique, compositions corresponding to 3 and 5 mol% doping of Mn were monophasic whereas the higher compositions revealed the presence of the secondary phases such as MnO, Mn3O4 etc., as confirmed by high resolution X-ray diffraction (XRD) studies. The decomposition behavior of the precursors prepared using oxalate precipitation method corresponding to the above mentioned compositions was studied. Nanopowders of compositions pertaining to 5 to 9 mol% of Mn doping were obtained using freeze-drying technique. The average crystallite size of these nanopowders was found to be in the 35 to 65 nm range. The microstructural studies carried out on the sintered ceramics, fabricated using powders synthesized by different routes established the fine grained nature ( < 1 mu m) of the one obtained by freeze drying method. Raman scattering studies were carried out in order to complement the observations made from XRD regarding the phase purity. The dielectric properties of the ceramics obtained by different synthesis routes were studied in the 80-300 K temperature range at 100 kHz and the effect of grain size has been discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li3M2RuO6 (M=Co, Ni). The M=Co oxide adopts the LiCoO2 (R-3m) structure, where sheets of LiO6 and (Co-2/Ru)O-6 octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li2TiO3, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li3Co2RuO6, the oxidation states of transition metal ions are Co3+ (S=0), Co2+ (S=1/2) and Ru4+ (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li3Ni2RuO6 presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li3Ni2RuO6 when compared to Li3CO2RuO6. Interestingly high first charge capacities (between ca. 160 and 180 mAh g(-1)) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO2. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Póster presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and magnetic properties of the RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds with the ScFe6Ga6-type structure have been studied. The stability of RCo5Ga7 is closely related with the ratio of the metal radii R-RE/R-(Co,R-Ga). With R-RE/R-(Co,R-Ga) less than or equal to 1.36, the compounds can be stabilized in the ScFe6Ga6-type structure. The lattice of RCo5Ga7 shrinks as the atomic order of R increases, and it is consistent with the lanthanide contraction. The structure analysis based on X-ray diffraction patterns reveals that in the orthorhombic RCo5Ga7 (Immm), R occupies the 2a site, and Co enters into the 8k and the 4h sites, and Ga is at the 4e, 4f, 4g, 4h and 8k sites. The interatomic distances and the coordination numbers of RCo5Ga7 are provided from the refinement results. The short interatomic distance (less than 2.480 Angstrom) between the Co ions results in the negative magnetic interaction, which does not favor ferromagnetic ordering. The magnetic moment of YCo5Ga7 is absent, and RCo5Ga7 (R = Tb, Dy, Ho and Er) may have long-range magnetic ordering with the paramagnetic Curie temperature lower than 5 K. (C) 2004 Elsevier Inc. All rights reserved.