938 resultados para Sol-gel silica
Nafion-mesoporous silica composite electrolyte: properties and direct ethanol fuel cells performance
Resumo:
Hypertrophic scars are formed by collagen overproduction in wounded areas and often occur in victims of severe burns. There are several methods for hypertrophic scar remediation and silicone gel therapy is one of the more successful methods. Research by others has shown that the activity of these gels may be due to migration of amphiphilic silicone oligomers from the gel and into the dermis, down-regulating production of collagen by fibroblasts. Normal silicone oil (PDMS) does not produce the same effect on fibroblasts. The main purpose of this project is the introduction of a particular amphiphilic silicone rake copolymer into an appropriate network which can absorb and release the silicone copolymer on the scarred area. Hydrogels are polymeric crosslinked networks which can swell in water or a drug solution, and gradually release the drug when applied to the skin. The application of gel enhances the effectiveness of the therapy, reduces the period of treatment and can be comfortable for patients to use. Polyethylene glycol (PEG) based networks have been applied in this research, because the amphiphilic silicone rake copolymer to be used as a therapy has polyethylene oxide (PEO) as a side chain. These PEO side chains have very similar chemical structure to a PEG gel chain so enhancing both the compatibility and the diffusion of the amphiphilic silicone rake copolymer into and out of the gel. Synthesis of PEG-based networks has been performed by two methods: in situ silsesquioxane formation as crosslink with a sol-gel reaction under different conditions and UV curing. PEG networks have low mechanical properties which is a fundamental limitation of the polymer backbone. For mechanical properties enhancement, composite networks were synthesized using nano-silica with different surface modification. The chemical structure of in situ silsesquioxane in the dry network has been examined by Solid State NMR, Differential Scanning Calorimetry (DSC) and swelling measurements in water. Mechanical properties of dry networks were tested by Dynamic Mechanical Thermal Analysis (DMTA) to determine modulus and interfacial interaction between silica and the network. In this way a family of self-reinforced networks has been produced that have been shown to absorb and deliver the active amphiphilic silicone- PEO rake copolymer.
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.
Resumo:
多孔SiO2膜层经热处理后,具有很高的激光破坏阈值,但是结构中有许多Si-OH亲水基团,导致光学透过率受环境相对湿度的影响很大。实验目的是改善膜层内部结构,使膜层结构中的亲水基团转变为疏水基团。提高膜层的疏水性,增强膜层的透过率稳定性。系统地研究了膜层透过率随时间变化的规律,在氨气和六甲基二硅氮烷(HMDS)混合气氛下热处理膜层,处理后生成Si-O-Si(CH2)3非极性疏水基团,使膜层的疏水性大大提高,因而膜层的透过率稳定性有大幅度提高。稳定性的提高延长了膜层的寿命。处理后膜层的表面粗糙度良好,均方根表
Resumo:
膜层稳定性对于激光器能否长期稳定使用极为重要。多孔SiO。减反膜经热处理后,结构中还存在许多Si—OH亲水基团,透过率稳定性受环境相对湿度的影响较大。向膜层中掺入有机硅,添加疏水基团,提高了膜层的疏水性,增强了膜层的透过率稳定性。膜层中加了Si-CH3疏水基团,膜层的疏水性大大提高;当Si-CH3与二氧化硅悬胶体中的Si的摩尔比为1/5.7时,即Si—CH3质量分数为0.35%时的二氧化硅膜层,其减反效果好,疏水性也高,从而大幅度提高了膜层的透过率稳定性,延长了膜层的寿命,对二氧化硅膜层具有高激光损伤阈值
Resumo:
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Resumo:
A novel inorganic-organic hybrid hydrophobic anti-reflection silica film used for laser crystal was obtained by sol-gel process. The film consisted of silica sols mixed with a small amount of polymethyl methacrylate (PMMA) or polystyrene (PS). The optical transparency, hydrophobic property and surface morphology of the film were characterized by UV-VIS-NIR spectrophotometer; contact angle instrument and Scanning Electron Microscopy (SEM), respectively. The results showed that the anti-reflection coating had good hydrophobility and optical transparency from 400 nm to 1200 nm. The contact angle reached to 130-140 degrees. SEM images indicated the hydrophobic films modified with PMMA or PS had compact structure compared to the pure silica sol film. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Aluminum-substituted mesoporous SBA-15 (Al-SBA-15) materials were directly synthesized by a hydrolysis-controlled approach in which the hydrolysis of the silicon precursor (tetraethyl orthosilicate, TEOS) is accelerated by fluoride or by using tetramethyl orthosilicate (TMOS) as silicon precursor rather than TEOS. These materials were characterized by powder X-ray diffraction (XRD), N-2 sorption isotherms, TEM, Al-27 MAS NMR, IR spectra of pyridine adsorption, and NH3-TPD. It is found that the matched hydrolysis and condensation rates of silicon and aluminum precursors are important factors to achieve highly ordered mesoporous materials. Al-27 MAS NMR spectra of Al-SBA-15 show that all aluminum species were incorporated into the silica framework for the samples prepared with the addition of fluoride. A two-step approach (sol-gel reaction at low pH followed by crystallization at high pH) was also employed for the synthesis of Al-SBA-15. Studies show that the two-step approach could efficiently avoid the leaching of aluminum from the framework of the material. The calcined Al-SBA-15 materials show highly ordered hexagonal mesostructure and have both Bronsted and Lewis acid sites with medium acidity.
Resumo:
The thermal and flame-retardant properties of homo- and copolyimides were evaluated. Those containing sulfone linkages in the backbone were found to be more flame retardant. Both properties were dependent on the composition. A polyimide/silica nanocomposite was obtained through sol-gel processing. The effects of the addition of silica an the dispersion, interfacial adhesion, fire resistance, mechanical properties, and thermal stability of the composites were investigated. SEM analysis showed a good dispersion of silica with a diameter of 50-300 nm in the organic matrices. The addition of silica increased the fire retardancy and mechanical properties of the composites. (C) 2000 John Wiley & Sons, Inc.
Resumo:
We report a facile strategy to tether lanthanide complexes to organic-inorganic hybrid titania materials via sol-gel processing by employing chemically modified titanium alkoxide as the precursor where the organic ligand sensitizing the luminescence of lanthanide ions is bonded to titanium.